Skip to main content

tiktoken is a fast BPE tokeniser for use with OpenAI's models

Project description

⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.

import tiktoken
enc = tiktoken.get_encoding("cl100k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4")

The open source version of tiktoken can be installed from PyPI:

pip install tiktoken

The tokeniser API is documented in tiktoken/core.py.

Example code using tiktoken can be found in the OpenAI Cookbook.

Performance

tiktoken is between 3-6x faster than a comparable open source tokeniser:

image

Performance measured on 1GB of text using the GPT-2 tokeniser, using GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0.

Getting help

Please post questions in the issue tracker.

If you work at OpenAI, make sure to check the internal documentation or feel free to contact @shantanu.

What is BPE anyway?

Models don't see text like you and I, instead they see a sequence of numbers (known as tokens). Byte pair encoding (BPE) is a way of converting text into tokens. It has a couple desirable properties:

  1. It's reversible and lossless, so you can convert tokens back into the original text
  2. It works on arbitrary text, even text that is not in the tokeniser's training data
  3. It compresses the text: the token sequence is shorter than the bytes corresponding to the original text. On average, in practice, each token corresponds to about 4 bytes.
  4. It attempts to let the model see common subwords. For instance, "ing" is a common subword in English, so BPE encodings will often split "encoding" into tokens like "encod" and "ing" (instead of e.g. "enc" and "oding"). Because the model will then see the "ing" token again and again in different contexts, it helps models generalise and better understand grammar.

tiktoken contains an educational submodule that is friendlier if you want to learn more about the details of BPE, including code that helps visualise the BPE procedure:

from tiktoken._educational import *

# Train a BPE tokeniser on a small amount of text
enc = train_simple_encoding()

# Visualise how the GPT-4 encoder encodes text
enc = SimpleBytePairEncoding.from_tiktoken("cl100k_base")
enc.encode("hello world aaaaaaaaaaaa")

Extending tiktoken

You may wish to extend tiktoken to support new encodings. There are two ways to do this.

Create your Encoding object exactly the way you want and simply pass it around.

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)

Use the tiktoken_ext plugin mechanism to register your Encoding objects with tiktoken.

This is only useful if you need tiktoken.get_encoding to find your encoding, otherwise prefer option 1.

To do this, you'll need to create a namespace package under tiktoken_ext.

Layout your project like this, making sure to omit the tiktoken_ext/__init__.py file:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py

my_encodings.py should be a module that contains a variable named ENCODING_CONSTRUCTORS. This is a dictionary from an encoding name to a function that takes no arguments and returns arguments that can be passed to tiktoken.Encoding to construct that encoding. For an example, see tiktoken_ext/openai_public.py. For precise details, see tiktoken/registry.py.

Your setup.py should look something like this:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)

Then simply pip install ./my_tiktoken_extension and you should be able to use your custom encodings! Make sure not to use an editable install.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiktoken-0.5.2.tar.gz (32.4 kB view details)

Uploaded Source

Built Distributions

tiktoken-0.5.2-cp312-cp312-win_amd64.whl (785.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl (953.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

tiktoken-0.5.2-cp311-cp311-win_amd64.whl (786.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl (953.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tiktoken-0.5.2-cp310-cp310-win_amd64.whl (786.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl (953.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tiktoken-0.5.2-cp39-cp39-win_amd64.whl (786.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl (955.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tiktoken-0.5.2-cp38-cp38-win_amd64.whl (786.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl (955.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file tiktoken-0.5.2.tar.gz.

File metadata

  • Download URL: tiktoken-0.5.2.tar.gz
  • Upload date:
  • Size: 32.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2.tar.gz
Algorithm Hash digest
SHA256 f54c581f134a8ea96ce2023ab221d4d4d81ab614efa0b2fbce926387deb56c80
MD5 124adef030fb620c3fe0f3ca943b813f
BLAKE2b-256 a7e80dc09862a2a7dddbd8578dbde80cff77a2efec8ecf476eaeab1dc75dffac

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 785.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5e39257826d0647fcac403d8fa0a474b30d02ec8ffc012cfaf13083e9b5e82c5
MD5 54dbb81ce7d91aa7b527f8253c1c1098
BLAKE2b-256 bc329b88a1634c5ae2b0b0fdd092254bde59bb93c9e4e779ef56d6ca9900bd67

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58902a8bad2de4268c2a701f1c844d22bfa3cbcc485b10e8e3e28a050179330b
MD5 3d7e16b8c270cc6a0b27898d88e1e866
BLAKE2b-256 f01c4a9d61404d81216738d248845b5cad48bfd1a433f39dca98478196d0a64f

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 58ccfddb4e62f0df974e8f7e34a667981d9bb553a811256e617731bf1d007d19
MD5 6466eddc3b993d4a64abbaec82e94e0e
BLAKE2b-256 8684b2335af5b41ef874af602f991b25c451e08d09d09768fa03be0c8875e655

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c3f894dbe0adb44609f3d532b8ea10820d61fdcb288b325a458dfc60fefb7db
MD5 31cd8c179ece7ab6cbf0c691d693061d
BLAKE2b-256 6496a63a2c76b2d2bd3b49c9a5d8f152bf8dbbca1a13b9321be06961cb370fd3

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42adf7d4fb1ed8de6e0ff2e794a6a15005f056a0d83d22d1d6755a39bffd9e7f
MD5 a2c79597badca924b9d69819fa76717c
BLAKE2b-256 2a9a18cb656bf514100026c738f5d42c7519232b3029337238b4fd2fc84f30eb

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01d8b171bb5df4035580bc26d4f5339a6fd58d06f069091899d4a798ea279d3e
MD5 9101ed758afcd3346dc45ffa0dbc3516
BLAKE2b-256 9113c998aa4f53343fb2e7ec6cbfeff23a57623e774e518c033c2a675a935afb

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b76a1e17d4eb4357d00f0622d9a48ffbb23401dcf36f9716d9bd9c8e79d421aa
MD5 a7318cf6ad3d7141c8ecbbefdf0a1b19
BLAKE2b-256 1f43680b72cacfd499c87b4c2605ecf36e17bf2eced28835dd627957e4b1dadf

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 786.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bcae1c4c92df2ffc4fe9f475bf8148dbb0ee2404743168bbeb9dcc4b79dc1fdd
MD5 8874bc6dbf7cb2f8c5816d307fe3b80c
BLAKE2b-256 f16273629527ff413c8ce20189d29eb52a91d6d4571e3214ef6d5a2c00ca4081

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 93f8e692db5756f7ea8cb0cfca34638316dcf0841fb8469de8ed7f6a015ba0b0
MD5 789f5bd8570ec468220d6909cc368d3c
BLAKE2b-256 e0608e5e5fbca8f9ad1db2ca41460c30a5a9b0eab7566d12b5b1028418276999

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 15fed1dd88e30dfadcdd8e53a8927f04e1f6f81ad08a5ca824858a593ab476c7
MD5 db5f52d98a3e2c7a5ee0fa3bc86282a6
BLAKE2b-256 8e00c847593b30ce1b4bd3024e35408300549433e81bace919b09b0fc9133191

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca96f001e69f6859dd52926d950cfcc610480e920e576183497ab954e645e6ac
MD5 060e29044b6a52a21aa0ee25f38c467f
BLAKE2b-256 fba9237dc2db35e6ec0fb7dd63e3d10ebe0377559203bd2a87e12a4adbfc8585

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a114391790113bcff670c70c24e166a841f7ea8f47ee2fe0e71e08b49d0bf2d4
MD5 b228dc5f3568b72067504c61a1711f37
BLAKE2b-256 39a46bef66fa638ad8b2be78f9cb5685170a81231c2e0f29ad3aabce2dfc646c

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7388fdd684690973fdc450b47dfd24d7f0cbe658f58a576169baef5ae4658607
MD5 0e767912bb58c0d8033ef55eff4ef2c2
BLAKE2b-256 f49990fefb027bd962cd336f9f955a2f27782aac123ee7943cfc8a7bd3c1f198

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 138d173abbf1ec75863ad68ca289d4da30caa3245f3c8d4bfb274c4d629a2f77
MD5 ee2f58b604c97801c22fa8ad79f9546a
BLAKE2b-256 77b5f608ec79861e687517bcb62a8eeebce4ba74741b5b105014359e0a94825a

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 786.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 692eca18c5fd8d1e0dde767f895c17686faaa102f37640e884eecb6854e7cca7
MD5 99d4df39f363e5070f6123c90369434c
BLAKE2b-256 199834a12a2edfdd757f67500c411805048244684c76289a578a42bfb2c0598a

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3d8c7d2c9313f8e92e987d585ee2ba0f7c40a0de84f4805b093b634f792124f5
MD5 82f37d0e056a3999019bfc56c3d74397
BLAKE2b-256 71bb0b879287dc727a74e402e9925f40acffd3a50ff807d81a76de8f948c812a

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 51cba7c8711afa0b885445f0637f0fcc366740798c40b981f08c5f984e02c9d1
MD5 81cb6f528fd2290be13e4e4ef882d570
BLAKE2b-256 e66c2a9f78fdb0e656d124972815d489cbb05ee7104fc9b2ef0e5ac523d24c7d

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72ad8ae2a747622efae75837abba59be6c15a8f31b4ac3c6156bc56ec7a8e631
MD5 e15b746b9139a8faf5727cc1b1230098
BLAKE2b-256 bf56a8910841d1f501cf8affeb06a0335a518888505c60ec9f2a2a6393190e48

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6092e6e77730929c8c6a51bb0d7cfdf1b72b63c4d033d6258d1f2ee81052e9e5
MD5 2b67cb63f08af4c227012e0bb7b19078
BLAKE2b-256 77a0631812d6fd83666e1d8adca05dbdbe5c5c8e685d3c2e55f50f5ba529c9ec

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b3134aa24319f42c27718c6967f3c1916a38a715a0fa73d33717ba121231307
MD5 e1a6869cdf5a6f8c9b705c966ee46c89
BLAKE2b-256 88e76021b0c18164defbdeda5d9e9d825d5c46d1dcb7365c2796fa08b8df8801

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c4e654282ef05ec1bd06ead22141a9a1687991cef2c6a81bdd1284301abc71d
MD5 cebf13bf883071a5c51cdb00b139cff2
BLAKE2b-256 fc43db77fc12bc513476da8641ac9720841d2140900da5a1356a8a00d9977f10

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 786.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84ddb36faedb448a50b246e13d1b6ee3437f60b7169b723a4b2abad75e914f3e
MD5 be97b731efe16f1520dd7539d57455d6
BLAKE2b-256 f753239548979a7b63ebaa2e7774993195e3c7fa2637bba4793ddb042a17c3ee

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5c1cdec2c92fcde8c17a50814b525ae6a88e8e5b02030dc120b76e11db93f13
MD5 5a497dc1b5c89862cd6f77b818ca8d3c
BLAKE2b-256 8e5908ba962f1c6851b703b356ac64824157e613a0aaa60ee738657556379e3d

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 41d4d3228e051b779245a8ddd21d4336f8975563e92375662f42d05a19bdff41
MD5 aa4081aed4a9a04d8606fd11cb567a5f
BLAKE2b-256 a75c2f9f311172a4aeea0d08158517dab4161a9f1b40b2861cf225654ad7f669

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60a5654d6a2e2d152637dd9a880b4482267dfc8a86ccf3ab1cec31a8c76bfae8
MD5 abe21554618a99da9aa5220e28bc5043
BLAKE2b-256 d23a64a173d645cdf5609e2e7969b4f7cd3dd48f8cb2f6d0b29a34d245f3cbdf

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c76fce01309c8140ffe15eb34ded2bb94789614b7d1d09e206838fc173776a18
MD5 528cf93d75436145ffc9080a2502ea22
BLAKE2b-256 e85dc854bbabbad47d8c436f386f8beb953ae8665f13ef0e73c3d0ed30f277a6

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ed7d380195affbf886e2f8b92b14edfe13f4768ff5fc8de315adba5b773815e
MD5 50564a9f87770080aa718054a269feae
BLAKE2b-256 22fecbd92a4a203567c069d766d573e9f9a44b05beafe88d927b7a78b00d5310

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2deef9115b8cd55536c0a02c0203512f8deb2447f41585e6d929a0b878a0dd2
MD5 21df1c3826a61ffead583d693cde5bdb
BLAKE2b-256 db74234dbff8d0264e2fdd080ab934050fa8f5ab4bc71971868376c658f719ab

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 786.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 368dd5726d2e8788e47ea04f32e20f72a2012a8a67af5b0b003d1e059f1d30a3
MD5 6fce26cdfc7796c1c65b399b0316c6fe
BLAKE2b-256 1fcfdf486d23fc03df12ea0f8564ecce9db636972ab2b774b154ab2877db4e4c

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0c964f554af1a96884e01188f480dad3fc224c4bbcf7af75d4b74c4b74ae0125
MD5 942fa945bfc3639fdbbec7edbbc10450
BLAKE2b-256 1dba237c3b8842aa2f81935dd466235e0bf4b88441ec5185d44bbde9ce514ff7

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5bf5ce759089f4f6521ea6ed89d8f988f7b396e9f4afb503b945f5c949c6bec2
MD5 4ede403aa9ae788a739aee6c7e20580a
BLAKE2b-256 c658c71138ea33c26b9f4c7de7255933cf47117cb2af052325218bb1dcd11834

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c4a049b87e28f1dc60509f8eb7790bc8d11f9a70d99b9dd18dfdd81a084ffe6
MD5 3e7974c8c4f26471aff07058c02d5722
BLAKE2b-256 5ea19df5ff81852e62cfc29669b81a56461008ca0870e0fe6201e76fa94db08e

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 35c057a6a4e777b5966a7540481a75a31429fc1cb4c9da87b71c8b75b5143037
MD5 ca4cc90a89dc031efe76364c1ad8c83f
BLAKE2b-256 4d13cc4c92b0e77b757dbcef2984ac6276497f66b44ac6240dff86eb5543c94f

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ddee082dcf1231ccf3a591d234935e6acf3e82ee28521fe99af9630bc8d2a60
MD5 5bc9f2535df154f5f6dfa24a320745e2
BLAKE2b-256 22d56d2dd6c24fbfc437eaef0d1e130798c4d02b8e078b583e2ffb7e1301a300

See more details on using hashes here.

File details

Details for the file tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8bde3b0fbf09a23072d39c1ede0e0821f759b4fa254a5f00078909158e90ae1f
MD5 7eacabd2240fc6d2e4d3db0f646ab5ce
BLAKE2b-256 e89891875dc9718aeb439513b8601b8fb9a66422ca275015553efc2fdc117174

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page