Skip to main content

Tile-based access to SciPy/PyData data structures over the web in many formats

Project description

Tiled

Disclaimer: This is very early work, still in the process of defining scope.

Data analysis is easier and better when we load and operate on data in common, self-describing structures that keep our mind on the science rather than the book-keeping of filenames and file formats.

Tiled is a data access service for data-aware portals and data science tools. Tiled has a Python client and integrates naturally with dask and Python data science libraries, but nothing about the service is Python-specific; it also works from a web browser, curl, or any HTTP client.

Tiled’s service can sit atop databases, filesystems, and/or remote services to enable search and structured, chunkwise access to data in an extensible variety of appropriate formats, providing data in a consistent structure regardless of the format the data happens to be stored in at rest. The natively-supported formats span slow but widespread interchange formats (e.g. CSV, JSON) and fast, efficient ones (e.g. C buffers, Apache Arrow and Parquet). Tiled enables slicing and sub-selection to read and transfer only the data of interest, and it enables parallelized download of many chunks at once. Users can access data with very light software dependencies and fast partial downloads.

Tiled puts an emphasis on structures rather than formats, including:

  • N-dimensional strided arrays (i.e. numpy-like arrays)
  • Tabular data (i.e. pandas-like "dataframes")
  • Hierarchical structures thereof (e.g. xarrays, HDF5-compatible structures like NeXus)

Tiled implements extensible access control enforcement based on web security standards, similar to JuptyerHub. Like Jupyter, Tiled can be used by a single user or deployed as a shared public or private resource. Tiled can be configured to use third party services for login, such as Google, ORCID. or any OIDC authentication providers.

Tiled facilitates client-side caching in a standard web browser or in Tiled's Python client, making efficient use of bandwidth and enabling an offline "airplane mode." It uses service-side caching of "hot" datasets and resources to expedite both repeat requests (e.g. when several users are requesting the same chunks of data) and distinct requests for different parts of the same dataset (e.g. when the user is requesting various slices or columns from a dataset).

Distribution Where to get it
PyPI pip install tiled
Conda Coming Soon
Source code github.com/bluesky/tiled
Documentation blueskyproject.io/tiled

Example

In this example, we'll serve of a collection of data that is generated in memory. Alternatively, it could be read on demand from a directory of files, network resource, database, or some combination of these.

tiled serve pyobject --public tiled.examples.generated:tree

And then access the data efficiently via the Python client, a web browser, or any HTTP client.

>>> from tiled.client import from_uri

>>> client = from_uri("http://localhost:8000")

>>> client
<Node {'short_table', 'long_table', 'structured_data', ...} ~10 entries>

>>> list(client)
'big_image',
 'small_image',
 'tiny_image',
 'tiny_cube',
 'tiny_hypercube',
 'low_entropy',
 'high_entropy',
 'short_table',
 'long_table',
 'labeled_data',
 'structured_data']

>>> client['medium_image']
<ArrayClient>

>>> client['medium_image'][:]
array([[0.49675483, 0.37832119, 0.59431287, ..., 0.16990737, 0.5396537 ,
        0.61913812],
       [0.97062498, 0.93776709, 0.81797714, ..., 0.96508877, 0.25208564,
        0.72982507],
       [0.87173234, 0.83127946, 0.91758202, ..., 0.50487542, 0.03052536,
        0.9625512 ],
       ...,
       [0.01884645, 0.33107071, 0.60018523, ..., 0.02268164, 0.46955907,
        0.37842628],
       [0.03405101, 0.77886243, 0.14856727, ..., 0.02484926, 0.03850398,
        0.39086524],
       [0.16567224, 0.1347261 , 0.48809697, ..., 0.55021249, 0.42324589,
        0.31440635]])

>>> client['long_table']
<DataFrameClient ['A', 'B', 'C']>

>>> client['long_table'].read()
              A         B         C
index                              
0      0.246920  0.493840  0.740759
1      0.326005  0.652009  0.978014
2      0.715418  1.430837  2.146255
3      0.425147  0.850294  1.275441
4      0.781036  1.562073  2.343109
...         ...       ...       ...
99995  0.515248  1.030495  1.545743
99996  0.639188  1.278376  1.917564
99997  0.269851  0.539702  0.809553
99998  0.566848  1.133695  1.700543
99999  0.101446  0.202892  0.304338

[100000 rows x 3 columns]

>>> client['long_table'][['A', 'B']]
              A         B
index                    
0      0.748885  0.769644
1      0.071319  0.364743
2      0.322665  0.897854
3      0.328785  0.810159
4      0.158253  0.822505
...         ...       ...
95     0.913758  0.488304
96     0.969652  0.287850
97     0.769774  0.941785
98     0.350033  0.052412
99     0.356245  0.683540

[100 rows x 2 columns]

Using an Internet browser or a command-line HTTP client like curl or httpie you can download the data in whole or in efficiently-chunked parts in the format of your choice:

# Download tabular data as CSV
http://localhost:8000/dataframe/full/long_table?format=csv

# or XLSX (Excel)
http://localhost:8000/dataframe/full/long_table?format=xslx

# and subselect columns.
http://localhost:8000/dataframe/full/long_table?format=xslx&column=A&column=B

# View or download (2D) array data as PNG
http://localhost:8000/array/full/medium_image?format=png

# and slice regions of interest.
http://localhost:8000/array/full/medium_image?format=png&slice=:50,100:200

Web-based data access usually involves downloading complete files, in the manner of Globus; or using modern chunk-based storage formats, such as TileDB and Zarr in local or cloud storage; or using custom solutions tailored to a particular large dataset. Waiting for an entire file to download when only the first frame of an image stack or a certain column of a table are of interest is wasteful and can be prohibitive for large longitudinal analyses. Yet, it is not always practical to transcode the data into a chunk-friendly format or build a custom tile-based-access solution. (Though if you can do either of those things, you should consider them instead!)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiled-0.1.0a40.tar.gz (150.7 kB view details)

Uploaded Source

Built Distribution

tiled-0.1.0a40-py3-none-any.whl (151.5 kB view details)

Uploaded Python 3

File details

Details for the file tiled-0.1.0a40.tar.gz.

File metadata

  • Download URL: tiled-0.1.0a40.tar.gz
  • Upload date:
  • Size: 150.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for tiled-0.1.0a40.tar.gz
Algorithm Hash digest
SHA256 e46b02a693b4d8d47de650bac804f3ea73941b932af657ad6983e3747123794a
MD5 cecfe50b067cab9da58b2135719e72c9
BLAKE2b-256 707f9226dd924d1638c6f1509b7c4bc6d343c55dee767223d0076ca2bff360c0

See more details on using hashes here.

Provenance

File details

Details for the file tiled-0.1.0a40-py3-none-any.whl.

File metadata

  • Download URL: tiled-0.1.0a40-py3-none-any.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for tiled-0.1.0a40-py3-none-any.whl
Algorithm Hash digest
SHA256 e288cf3bb116698d16ad16a36425f6ebabed943b7672d1bd3342d05c7d9d9414
MD5 466bd269b43412c24e24c157cf812773
BLAKE2b-256 73e743497b4cf047d70c2db2a46b9f1165bb3377196cf55fea305fd9874aec3c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page