Skip to main content

TileDB Vector Search Python client

Project description

TileDB logo

TileDB Vector Search

TileDB-Vector-Search is a C++ library and Python API for vector search built on top of the TileDB Storage Engine.

Please see the following blog posts for background:

We are actively working on LangChain integration, with others to come soon:

Quick Links

Quick Installation

Pre-built packages are available from PyPI using pip:

pip install tiledb-vector-search

Or from the tiledb conda channel using conda or mamba:

conda install -c tiledb -c conda-forge tiledb-vector-search

Contributing

We welcome contributions. Please see Building for development-build instructions. For large new features, please open an issue to discuss goals and approach in order to ensure a smooth PR integration and review process. All contributions must be licensed under the repository's MIT License.

Testing

  • Unit tests: pytest
  • Demo notebooks:
    • pip install -r test/ipynb/requirements.txt
      pytest --nbmake test/ipynb
      
  • Credentials:
    • Some tests run on TileDB Cloud using your current environment variable TILEDB_REST_TOKEN -- you will need a valid API token for the tests to pass
    • For continuous integration, the token is configured for the unittest user and all tests should pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tiledb_vector_search-0.0.18-cp311-cp311-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

tiledb_vector_search-0.0.18-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tiledb_vector_search-0.0.18-cp310-cp310-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

tiledb_vector_search-0.0.18-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tiledb_vector_search-0.0.18-cp39-cp39-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

tiledb_vector_search-0.0.18-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tiledb_vector_search-0.0.18-cp38-cp38-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

tiledb_vector_search-0.0.18-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tiledb_vector_search-0.0.18-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c8dee17d555df52a97590593d032543300033b23b87f872bf24230d573fd1934
MD5 358411b32acde28a7973f7f2964b0265
BLAKE2b-256 a186a47556f99bc923d0b13210972040981f7be97a8314de7372ab9db35e0947

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 62c796b68805499fe1dfa36a7e851bb39c9b29290c8bb4879a1891e2e08af050
MD5 0011e7dbe7f5c143b3d21e44b2eafa5b
BLAKE2b-256 543d13c98dd23e603e8423bbb116da0d1f1c6bcb0f08032a05bea6d3f0fcb1bd

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 777ed3511a44b2dfab3549ce3799f788929a782b82710d89f8ec66b12972d43b
MD5 14733167ec386e4b232ec30c6251991c
BLAKE2b-256 5c2c44f7dc21a63b784049da88800e4b163faeb39275d590f15001149a5d4be6

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f98b9bdfdacd51db5f540e222cdf27b2c59f768f2a7f30c0d2de0e4c8e7f9d19
MD5 43c60e512f47533cc2433310faa85a94
BLAKE2b-256 91565efaabf389539739940072ea82659e239874a9c3621649c8c906fb1464fc

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6abec1b6cef5dae0ac65f96330f375f5e7022858c4206d03e37a628532727b5c
MD5 54eb4c4e5ac792326fcfa2a50dceea74
BLAKE2b-256 9d969249c84ea8ef70fcfaae9e0423721c869cbc9554bc3ceaa8fa709238bcf1

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a098a567abab56d52f1028cb15ef3917fb9edc6e0aac2a55c8abb8082fd7975b
MD5 f8ea1ee58633a2cad5ddb1fea0b73876
BLAKE2b-256 a14c4eba75418300a834bd60ec810754ef30e4b5cd6abfbd518e890c62f5d529

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7b56f1d42c0912092ae763425c2dc87cd77d9a92270d85b2889b3d79999efc87
MD5 4844d034f043459940fbe7b3700ace70
BLAKE2b-256 37d5b88466aad0e6f726c3fd2b032ac198e55d702f2a51a59c8c287bc42761b6

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 132360abdcdcc8ad7bb0c2abd334740f039022aae8fe95c58c2e133de196a744
MD5 d9014c1a1924ab5aad41dfb0325d437e
BLAKE2b-256 c13bcbf483c6e6434d2a802fb8167dde4334a23794922558664ed72e669a1ee5

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c976b4eba362543420aa04bb7ed945fe50ed88478b196e7818198419f4f4764
MD5 a8c757db7af27728d4de70f5eb77d6e0
BLAKE2b-256 207d1904278da910468883a66ea9c52715a03071b70b929cecb9fe0fcd644d65

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 574fdb88294cc89558b50552ef1d6daa0222f3a85d912c4ff7498ff989c52abe
MD5 a979a1318543b6e3e5eeb53d673d04f3
BLAKE2b-256 aa2aa4453416e3b758dd3f40f5daf4ec192e975455f6e6aee9e41febe8b709df

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7bd6e44b33d36efb902fb8891f84e9da0560a10f8ac61abaa0c6101f896b41fe
MD5 2fc0b2cf5dc8676fad22592959e56056
BLAKE2b-256 a9fffd28a017f63f53c72efc890579ceb3a1ce1c4e2424df1432ed9a9a8ff07b

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 be6122bfb3e74b91276e2ed2fc4e9a18b4230cd417807757bc2ba18eb9b1e6ba
MD5 f85258570ebfeb5acd7417ef3d67d4c8
BLAKE2b-256 20d8f055b0b241dd5851b7fe7117a35f4ad8e80a4afb894172fa513c603e43cd

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 805319e05f3d059d14ef4ed078eb8d89caf6835d67067b03d449f7e2c26f93b4
MD5 c332e7b4cd19997e534b1c9da994b03b
BLAKE2b-256 4170af97ed1b733fa1786d54a933740ebbf184c72bb49d15aa979a763c73d80a

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 816d1402933a1a9d8dba654bd6c9f540d990fd820e0d16ac652dd3e27849c4b8
MD5 b1cf08a5e715fe9ff4b2052aa0598f17
BLAKE2b-256 1b3b805b85a3eea37cd210b53c0a209e2928df5653ddeb1207d39a2a4d4b8238

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 83d10c8ece5ab6d91e593f425ee7ed681304b4a6698976382f7e7c50549a1795
MD5 91cf2664088a03fddc864d1b8ad4657d
BLAKE2b-256 e8338f36e98e7b833113278e334e5cae93e2a8d5d36e259f4d74f27f671121a8

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.18-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 85d9c892caa68be318c8e0bf856f881df9af9ea121646b067a0ac84b2c20f172
MD5 3868c33c4dd63a69f07379152ae11610
BLAKE2b-256 d6fc3e6d09f33a5e339290c9d1a6ef5ea6d5315c7ecf3ad5fad4cd8e994fbf52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page