Skip to main content

TileDB Vector Search Python client

Project description

TileDB logo

TileDB Vector Search

TileDB-Vector-Search is a C++ library and Python API for vector search built on top of the TileDB Storage Engine.

Please see the following blog posts for background:

We have released a LangChain integration, with others to come soon.

Quick Links

Quick Installation

Pre-built packages are available from PyPI using pip:

pip install tiledb-vector-search

Or from the tiledb conda channel using conda or mamba:

conda install -c tiledb -c conda-forge tiledb-vector-search

Contributing

We welcome contributions. Please see Building for development-build instructions. For large new features, please open an issue to discuss goals and approach in order to ensure a smooth PR integration and review process. All contributions must be licensed under the repository's MIT License.

Testing

  • Unit tests: pytest
  • Demo notebooks:
    • pip install -r test/ipynb/requirements.txt
      pytest --nbmake test/ipynb
      
  • Credentials:
    • Some tests run on TileDB Cloud using your current environment variable TILEDB_REST_TOKEN -- you will need a valid API token for the tests to pass
    • For continuous integration, the token is configured for the unittest user and all tests should pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiledb-vector-search-0.0.19.tar.gz (24.9 kB view details)

Uploaded Source

Built Distributions

tiledb_vector_search-0.0.19-cp311-cp311-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tiledb_vector_search-0.0.19-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tiledb_vector_search-0.0.19-cp310-cp310-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tiledb_vector_search-0.0.19-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tiledb_vector_search-0.0.19-cp39-cp39-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tiledb_vector_search-0.0.19-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tiledb_vector_search-0.0.19-cp38-cp38-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tiledb_vector_search-0.0.19-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_arm64.whl (9.5 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tiledb-vector-search-0.0.19.tar.gz.

File metadata

  • Download URL: tiledb-vector-search-0.0.19.tar.gz
  • Upload date:
  • Size: 24.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.9

File hashes

Hashes for tiledb-vector-search-0.0.19.tar.gz
Algorithm Hash digest
SHA256 45a40267bd1e4278af2e2d7f1cc158eef04c24ff810a04897fc43c1757944720
MD5 2d334cfe21947c9149489f86c781c60e
BLAKE2b-256 38e7b41844291e142ec8b6a47183fa8478365d3f2d0d559b2531bf45860f6557

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4cd50dc148e2cceb0c19f92b5d246fe7a3159783e79838976692b38e2dafd3af
MD5 3604e58d3f030923a5e28418daf0214f
BLAKE2b-256 84e39aee3027016d8b418beb841e87a258c1e40a979111a198bc5ddad3168500

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2f9dbb1baa8e54252b431414079e73743b2a1c15e177e63dcdd14e0198ba0d14
MD5 9c5fa5f2eac664a098c63bcd0978d7e9
BLAKE2b-256 7c31ac265b18d2fe11130c8c053b1dd51980a20fab9e281006ef3aacdd53e830

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1c9263f0f5d28acb4def1259970ad21890b7ad6d5f76e3b828d8f8288e685d21
MD5 f396d7ce1a96e9ec9fb6581b004588a8
BLAKE2b-256 20de61acaf2bf013967e3f6d7adce43292d4a1c0fea6f623454c2584fc032317

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 73ed0b0fd4065f568675f0af5cb773dde3f086043d5ba0278b825b3d48c1a476
MD5 8e24599571631e3781fc4e5dfaaba12b
BLAKE2b-256 3ed41f3fda20911e2bd065e7c507047119c0cd94aeb75f7bead0277631856e33

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d6e76d253d81ed431457ca55981225477c970bebf17a2eb3bddc6277fbf3ce28
MD5 cdc40944f9f1a1023fe88d930534a93b
BLAKE2b-256 b9c3e4e3768d7b590829c990e0cf29bf61f42b21f299f19882ab3a33b89cd867

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 191d13fd3c4160be5d3c511af3924c86cb155cbd0881b9b2af844098b746b3b8
MD5 ce8254098a602c34c611a17a1bec3e12
BLAKE2b-256 20b694bcc2f1e3ff83182de2947d01e4c9adba2147d35c3f7b471d2a01d3879c

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 49257aceaa15be2557bce63f0f7b6fcc2cb75ffbba971a998173e739e55e8ec9
MD5 850ef24107b86481c8162a8bd2ab8457
BLAKE2b-256 b1e10d759037205bcf309cacdfe2b4957f97b3e873104cc853a434ec831695ac

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7af4e0cb6bd2250b17cce96794825b38609da020759004dc68a3614ea55eb467
MD5 d4fff9ba9779bf4ebb2a20466ca6d3fa
BLAKE2b-256 b07ba3e2499e87968b45b0b6107ccc906f8e94cd8d3e542f92e8b0a58b408af4

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 74ac322729c2f6661081b6740d1f3cead6e891e4cd8923eb286edf9d1472636e
MD5 3c1aedd8d7fd06da5f66caed41a01a85
BLAKE2b-256 757febcab95d9007b1ce86c7588464667c6b69a1a254b860ff57ebaa970a89b6

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d14ab7cd60e1f0627840d5ec706ea51bfa2650830974962bedf20520215a6cfd
MD5 482bcfb809d4ca91e9b5ef6fd09abe93
BLAKE2b-256 9a9ea50a0f29eac8d4e2e70aa15059e541ee73a367f3c618a8f6d832ae3d5d0e

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 45e65eccef07290bc51962ddc9104a7ad1adee9c3978fb419c3f457354535c87
MD5 fe4414fa95a91b6a14aab81969b34352
BLAKE2b-256 5376e57d25a7c2fd7194e15b3d9cf05f8ababc12bbd2f777265bd150122a4de9

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0962fa9eda946f9ee1153bfa2681fd0b1669509f2f2f8e11001abb4ba1af9957
MD5 35007e85b0060efe034e8d96a3801569
BLAKE2b-256 57786347529ece8af54e22e71dec276ad82b9920af572479d6448dff8d2a8dff

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 183ea768516c5e3fcc359a00aa29bbba8d0aaf811d9802db903aebdbd4d545a5
MD5 2e5644616e54e65225651dde26673728
BLAKE2b-256 47126f06cd551656ec32c669c8481d49529b1d5b2309aacc37d86d681e7df49b

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dbc5baca810348d66f6f452c39aa18d0267e7209823bad5556a5bcc2a60ec364
MD5 6e36d9bac6bda0c077cde715251cddc8
BLAKE2b-256 0815ce0160f8ea4ba22d348405b46cbd77598c8fce447c4a8a58831bada56ae6

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 af07a7a922b03a757e2e9f9e364d8d7af08a4045f044613b1f28b856e1985d98
MD5 19ef6b5a578c6331594e46c292fc84a1
BLAKE2b-256 d94bf08c674a68c2fa7dd96153b9db0750d7f9acb36166e45aa4413ccee4cc79

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.0.19-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 64583134dd75552dd9895bd8d7508a8e6e35512223ec76f168ccd6b5210baaf7
MD5 ebe406f8c191c42a76a47fac402927bf
BLAKE2b-256 fe3b4ac3ddf424bfac9bca31602680c154a30b9289de654bedc0e0de206b24a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page