Skip to main content

TileDB Vector Search Python client

Project description

TileDB logo

TileDB Vector Search

TileDB-Vector-Search is a C++ library and Python API for vector search built on top of the TileDB Storage Engine.

Please see the following blog posts for background:

We have released a LangChain integration, with others to come soon.

Quick Links

Quick Installation

Pre-built packages are available from PyPI using pip:

pip install tiledb-vector-search

Or from the tiledb conda channel using conda or mamba:

conda install -c tiledb -c conda-forge tiledb-vector-search

Contributing

We welcome contributions. Please see Building for development-build instructions. For large new features, please open an issue to discuss goals and approach in order to ensure a smooth PR integration and review process. All contributions must be licensed under the repository's MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiledb_vector_search-0.8.0.tar.gz (17.7 MB view details)

Uploaded Source

Built Distributions

tiledb_vector_search-0.8.0-pp39-pypy39_pp73-win_amd64.whl (9.1 MB view details)

Uploaded PyPy Windows x86-64

tiledb_vector_search-0.8.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (14.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

tiledb_vector_search-0.8.0-cp312-cp312-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

tiledb_vector_search-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_x86_64.whl (14.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_arm64.whl (13.2 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

tiledb_vector_search-0.8.0-cp311-cp311-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

tiledb_vector_search-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_x86_64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_arm64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tiledb_vector_search-0.8.0-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

tiledb_vector_search-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_x86_64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_arm64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tiledb_vector_search-0.8.0-cp39-cp39-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

tiledb_vector_search-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_x86_64.whl (14.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_arm64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file tiledb_vector_search-0.8.0.tar.gz.

File metadata

  • Download URL: tiledb_vector_search-0.8.0.tar.gz
  • Upload date:
  • Size: 17.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for tiledb_vector_search-0.8.0.tar.gz
Algorithm Hash digest
SHA256 47bf2884b37fae21fbba430a8cb27e92a0640af80d738577c1fcc6e1794c7479
MD5 0667612412c129642cbb7cbd5596fa89
BLAKE2b-256 f2a4ace78a51296918752b674221fb93314315c031c44145c842ea854b32040c

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4c49d304b7ad85a6fcf8c25eaa1311019d68a0eaf406ea5618fb91fb894dc993
MD5 f1be88f894883ea5c5eda421ad3259b3
BLAKE2b-256 8c23af1bf3a950d7518d11de0b474465cb2c46d013746190bfa5cea9969e34fb

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a11224335c11fa0641eb43c5cdac73840ae8eb487571847de6b8833c450e342
MD5 73ab4c22a50ac8f1880ca52973420543
BLAKE2b-256 c1be34c7de97f0fd3ea82a807ac552702b8c7c76329a2b4c73256ccb16f8960b

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 00a90befd25e86ff0cc9fafd479c0258c43e15c5ddf1789f10fc4d76962c1c58
MD5 1cb7c819ed84e40c7af39d2a22b8ea8a
BLAKE2b-256 e38a9ec2df9428950e8ff548b65b19d0eabe1a2dbcacbc41d70787f454ab1f7d

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 910349adc4bc12b9f9228de739a48bf70f7bd9687e684de75c4dd3837bb2fb2b
MD5 4182884b725483f4c68af56c0bdc9727
BLAKE2b-256 21ef78fd32f0ff1163f9db5597836bb2683fc05d23c477b157e58178ac31de17

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74ec96fb7d7d53ceb0374a44ab8a8cd6596cd3e31cb4fddeeaea24524b9f1383
MD5 6d921b294d8114d7ef15209646dcc43a
BLAKE2b-256 c4d1c58c08bf457d285aa5912b2121cae5355a7772eff0c1ab4e5383962fcbea

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2605ed79106fb9a80a27669152d6e5795be7e5d6931c12bb9aefcdb20cb8ce84
MD5 f757a3dc72cea60efcf4a5df85d9b5f2
BLAKE2b-256 d3447cdb57f46e0f6a4f3eddd02866658a410ef74385a87c1734aa03a67672bd

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 07addad61ed275950202e22bc41e6e12387d774a2c4cfd8e3fea119f2693cc40
MD5 b6b69c17f6f0a244f04ad0081f13901e
BLAKE2b-256 41f38b3a1c2e1a935963953483f67719ed702e62192c4bc29b79988cffe43a52

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fe22d587dd6799119d9f2ae7cd2d3950fe8900157f04e6f49a3657b8ab9f1d83
MD5 d97024bbae16b132efca789b4d61e103
BLAKE2b-256 706924cbf23e251ae5dd15c8eb1f7e28e0e13df66753ce12fdaa12d78e6111e1

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5be64c5dae5af419da5aaef4115dab351bf4ef2f5e6108904e4f76ef9d8517d8
MD5 3577ce38430291f24b55ba7692081993
BLAKE2b-256 86c79fe8166321dac0c8c0e79343f94856ec978859263004f776eb653f11d256

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 719c366e27a9028acddc1b093713cac373a791d1ec6b341a6a6f9a901701e99c
MD5 711f426ee497fb6f0bcf48457d20d7f1
BLAKE2b-256 303b704e1fdb24cff20539a372a7b6ad895e821710e65f86a87b78386f1368ff

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5af34fafb6dacc326744f11c17b01628cc0054d112c74b3962352d9b63ecaa46
MD5 51be135f3d03e65f3c5af290e72554a4
BLAKE2b-256 c72de07a3d52ad817f683881f83da702d2740df5636a0d4a7d0387c8d41fa953

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ba1bebb12cc8a0335aa893208a0b393ee25b78e3f40883f15a3054e4123052bb
MD5 d71f1ff86adf4a8f92638230934c5968
BLAKE2b-256 c40bc3403d59dbb936c78f9d38aeb2a84650b4899c8355b7591a5036abe4a51d

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdf584d26232ef7631725210933f381f161571a4b0d5ef7bb357692f4f002854
MD5 7adad2586c2a779c40db29c6c36b3e52
BLAKE2b-256 543139fb6a360d1d10d7809ce370e9ef9bfdc6a72f2e5fe84aaeb00a20e3b334

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 565c07d663c84ad23145af311e2383305ba662c20a1b1e05bf2f2d3fd27ffa8a
MD5 2cf2b0bf33dc15628a285962ee0e0916
BLAKE2b-256 2913f4846a66130d40611bcf8ed207193f27f2bd3f3db415b320d254c1814470

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c6c2d3d760917b1a84067f0e253119ab288102d1b9e2d5f4eae7ae0b6d61b5c3
MD5 97ee8064bc35f3bfbb1261506f88eda4
BLAKE2b-256 cb35a0f2b0f5339b1f8bdfcf4e6205d52189718c1c1d89b16ebd6f6673f071d6

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b48205aa806988061c412e68bedf6bbf6cf0e0ffd21a13dc8a3ab6d5143b6d7f
MD5 a2fbbed8ea338973c6d94e5dc93ec09e
BLAKE2b-256 84ebfad6e13c5c74c693b13bbdf4cc1ae6acfcfe20bf463604169042cda9fdf1

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b57af361247523038cd45f4e57498a7ef0439a72f67418946e2720d78bc5725
MD5 a83a825c96e9b50e6e5b1c1e0b29862c
BLAKE2b-256 905c5c19de99ffbcf17260d90f5ec953fd5c9846e6a86d9335e105bab40103d5

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 bd2122a9959817aef93209cb9bd4ba583e5b59e28b20b5b97f06025135929a33
MD5 363b39986ede9dbb1383b883e325507b
BLAKE2b-256 0cc58d8b232e244bdd1335c3f8d6dff4782bb79f249f0a365d2ba36ac5b0f9b8

See more details on using hashes here.

File details

Details for the file tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tiledb_vector_search-0.8.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9c01d85264a58839bd029f861f2e1649fc3c50458365d0a1546ed079ce8ffaf9
MD5 c0e3543d9a9a709a3d33fd3e5d21414f
BLAKE2b-256 f212d0e4d8722e392d51ac34d308adcb7f47c3169a6f0ef71d6c0985d86f58a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page