Skip to main content

Pythonic interface to the TileDB array storage manager

Project description

TileDB logo

Build Status Anaconda download count badge

TileDB-Py

TileDB-Py is a Python interface to the TileDB Storage Engine.

Quick Links

Quick Installation

TileDB-Py is available from either PyPI with pip:

pip install tiledb

or from conda-forge with conda or mamba:

conda install -c conda-forge tiledb-py

Dataframes functionality (tiledb.from_pandas, Array.df[]) requires Pandas 1.0 or higher, and PyArrow 1.0 or higher.

Contributing

We welcome contributions, please see CONTRIBUTING.md for suggestions and development-build instructions. For larger features, please open an issue to discuss goals and approach in order to ensure a smooth PR integration and review process.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiledb-0.17.4.tar.gz (296.4 kB view details)

Uploaded Source

Built Distributions

tiledb-0.17.4-cp310-cp310-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tiledb-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiledb-0.17.4-cp310-cp310-macosx_10_15_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tiledb-0.17.4-cp39-cp39-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tiledb-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiledb-0.17.4-cp39-cp39-macosx_10_15_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tiledb-0.17.4-cp38-cp38-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tiledb-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiledb-0.17.4-cp38-cp38-macosx_10_15_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tiledb-0.17.4-cp37-cp37m-win_amd64.whl (4.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tiledb-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tiledb-0.17.4-cp37-cp37m-macosx_10_15_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tiledb-0.17.4.tar.gz.

File metadata

  • Download URL: tiledb-0.17.4.tar.gz
  • Upload date:
  • Size: 296.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for tiledb-0.17.4.tar.gz
Algorithm Hash digest
SHA256 acd735a4515592595619b1b042dbb8d52fd309f92c5cabd1bb8cd0158a981131
MD5 5bcf40ef9d8b3990b780ebc0e6e7f009
BLAKE2b-256 82271cdbe5f2ec4ee71008a6d19e2cba6bc810630b028f6a9496408d3cb340dc

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tiledb-0.17.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for tiledb-0.17.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d4a3eee623349f3dccdb464fea9fb695ec97b8298152bd02115947e142c131b8
MD5 a2db836f4e24934ab274915131f94c83
BLAKE2b-256 4e1a9876346352a53ce310be31101d3933f613d926505fb3a2ee11736692cdc0

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 323eaeba7a51bc7c0182b45d51a937546f89a978aaafd122d7f189c4d149a4e4
MD5 8b182e7852ac5af877a239505d243f6b
BLAKE2b-256 d02f21c939a8262a3d1fa870842519de0facce57987c1607a81b6dd80aaee777

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 19ca4deb99c9f198cc7e28149089f336928f64a882497dd585144918d49feb38
MD5 fdb2d1c6512d15e04966b3880e7cd89b
BLAKE2b-256 bd310ea451df10c87181dbb9de1cee3fe2d11d43855831e07b7aa5b815f82586

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tiledb-0.17.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for tiledb-0.17.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 73a4e2a602d76990100945fbd5380666f8a0ae05748d98a52519f270fd6d0fa0
MD5 a4c5e022fcc3e8e1ba6dd81f1d39b6ca
BLAKE2b-256 ad177a6b4540290a76b13390c335665b1cff472c73a89e5053304a48dbe4a679

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1ad8272c7fe0bf93fcc1a4a15546308971c4b1f370536d1217c18be42ffa503
MD5 4cb43202b14c870c4fbd99e05ce90366
BLAKE2b-256 f92e1a1b9793dd1ff74ce4b4dc58084716f40db32b7328f160800448291685b2

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 edc1ea7fd443e685e885c690865736b133b18e3e5392cb3c49865ba6acfe1e9d
MD5 f51e3173ca7a43c220c043de05d63434
BLAKE2b-256 fe642be0837c22b541c5eedced98f724f8f49f0bc4e3c3f32a933eaab83d130e

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tiledb-0.17.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for tiledb-0.17.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 45ddd9e53bb57fc6b204813fccfc059ed47b16a29545647ee58c25207b21e08d
MD5 d4f458b9d4e0c3f9bbdf3189e4fe3343
BLAKE2b-256 727bb52419743402749a42bdaef4e22061c69578452d2820429ace1282425569

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f5a8e20c4b21cdd18ab46c044b74cc32dd03cd42930a5c0a47aa5693ab3ecff
MD5 a61854a2682a0e5f277ee6a3b92039ca
BLAKE2b-256 8da436784a830df07f6ca964de22c2f34f67729260dd7ba303f7c005a861c58f

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7272529d914ec1bb4b221728b763d118ef7e0880ebab44a04aea03940e46aa62
MD5 c351ae0347b668ade0a47c3c2fed0f4d
BLAKE2b-256 2f6994871e4c44902a4ffd30bdb2176cfe259aea20babca33b295d9d3c5293cc

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tiledb-0.17.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for tiledb-0.17.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a76667f210377418d7f87f57bf12b388370937bfd11e79dd592d7d5df61503af
MD5 1a35c764bf3cf4d53e1e9b34caf015e9
BLAKE2b-256 af1006a17b73761f56ab89da3e1c47b7f8984f697936dc14f88218e8c433bb31

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a044648fae01b0e98bace5099964016d8e66dffcf75e5514c70f8908a878a7dc
MD5 e85665413e630cdf32f583c8a7ca6cb8
BLAKE2b-256 4cb7b9b410cae737f2c941bd9424182409d5e1bbb71f234a0da38bbed8f7fda5

See more details on using hashes here.

Provenance

File details

Details for the file tiledb-0.17.4-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.17.4-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ac1c4f767610295c45aaca6cac3c8a8d7154e05ade95ee1245d89832acf841d4
MD5 44fee98b17621f39327022e6e845dc54
BLAKE2b-256 cf19792ca4443b8d597d04caa97adfd32127c37b03a15f38bc39b2c07b54c324

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page