Skip to main content

Python API for efficient storage and retrieval of single-cell data using TileDB

Project description

Overview

This is a Python implementation of the SOMA API specification for interacting with the Unified Single-cell Data Model.

Installation

TileDB-SOMA is available on PyPI and Conda, and can be installed via pip or mamba as indicated below.

python -m pip install tiledbsoma
mamba install -c conda-forge -c tiledb tiledbsoma-py

To install a specific version:

$ python -m pip install git+https://github.com/single-cell-data/TileDB-SOMA.git@0.0.6#subdirectory=apis/python

To update to the latest version:

$ python -m pip install --upgrade tiledbsoma

From source

  • This requires tiledb (see ./setup.cfg for version), in addition to other dependencies in setup.cfg.
  • Clone this repo
  • cd into your checkout and then cd apis/python
  • python -m pip install .
  • Or, if you wish to modify the code and run it, python -m pip install -v -e .
  • If the TileDB and TileDB-SOMA libraries are locally installed to a custom directory, such as /usr/local, set the path with environment variables TILEDB_PATH and TILEDBSOMA_PATH, TILEDB_PATH=/usr/local python -m pip install -v -e .
  • Optionally, if you prefer, you can run that inside venv:
    $ python -m venv venv
    $ . ./venv/bin/activate
    $ python -m pip install -v -e .
    
  • In either case:
    python -m pytest tests
    

Status

Please see https://github.com/single-cell-data/TileDB-SOMA/issues.

platform_config format

When accessing SOMA APIs, TileDB-specific settings can be configured with the platform_config parameter. The options accepted by TileDB SOMA are described here, using TypeScript interface syntax:

interface PlatformConfig {
  tiledb?: TDBConfig;
}

interface TDBConfig {
  create?: TDBCreateOptions;
}

interface TDBCreateOptions {
  dims?: { [dim: string]: TDBDimension };
  attrs?: { [attr: string]: TDBAttr };
  allows_duplicates?: bool;

  offsets_filters?: TDBFilter[];
  validity_filters?: TDBFilter[];

  capacity?: number;
  cell_order?: string;
  tile_order?: string;
}

interface TDBDimension {
  filters?: TDBFilter[];
  tile?: number;
}

interface TDBAttr {
  filters?: TDBFilter[];
}

/**
 * Either the name of a filter (in which case it will use
 * the default arguments) or a specification with filter args.
 */
type TDBFilter = string | TDBFilterSpec;

interface TDBFilterSpec {
  /** The name of the filter. */
  _name: string;
  /** kwargs that are passed when constructing the filter. */
  [kwarg: string]: any;
}

Information for developers

Please see the TileDB-SOMA wiki.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiledbsoma-1.3.0.tar.gz (159.0 kB view details)

Uploaded Source

Built Distributions

tiledbsoma-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiledbsoma-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tiledbsoma-1.3.0-cp311-cp311-macosx_10_14_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tiledbsoma-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiledbsoma-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tiledbsoma-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tiledbsoma-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiledbsoma-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tiledbsoma-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tiledbsoma-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiledbsoma-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tiledbsoma-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tiledbsoma-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tiledbsoma-1.3.0-cp37-cp37m-macosx_10_14_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tiledbsoma-1.3.0.tar.gz.

File metadata

  • Download URL: tiledbsoma-1.3.0.tar.gz
  • Upload date:
  • Size: 159.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tiledbsoma-1.3.0.tar.gz
Algorithm Hash digest
SHA256 42ec45a1743ddd62920686169489b207be92c31fda5d82ca5c4833ff60744283
MD5 35030fa978332d0a3074d4341d3a6fe7
BLAKE2b-256 a3d9e691c37160235898c49fc27b272cf22e241da8d3fc443acc2ce544d1044d

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5f3264e5b64b912e5e731572ad0dff28c80681d9f8ec115204c6b497e99e1da
MD5 249d28af7fd53cb64c18b08c51b1e2ca
BLAKE2b-256 08d3234f0fbddb5e183667fa8d390297b4a78fb0d5fab1d2d761ce9aa232a8e6

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91db6b0a212075ea453f0e7577788312273cc3b41e61cce200d73bec8cef850b
MD5 ee53fc9f34cc84c3c9db243cc6fd3058
BLAKE2b-256 35d223073b440ef6ef2bdadd201dfaf13cda97504e69244234327b2bff304761

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 918bd7881939b5553b6e9cbfa17a88f4771b8fd1a777047eeb95ebdacfc6a501
MD5 f592b99ceac0367fd9586ebaecc124a6
BLAKE2b-256 2905d756844b7d30770edc1c3055030aead618136d4f49d6df413fa38b1c879d

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6475604c69eecce7b07139bb24b305265e99f39834f2755660556a2e7d2f0f64
MD5 a66876ca475429469d2af3ca0dcfd0cf
BLAKE2b-256 6a80295812188a5751cac4b1f1315bc2c8ccc6cf747370d937c90246bb355a24

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c7d78a93cd818a737567aa196410930ee734b89fb3561d12987004003ebaf91
MD5 5c78c6f7b0779e36ec384e73170fd36f
BLAKE2b-256 b9bf26d32d6d95a3446b7a943f0899003bf2ff210eb68209806ba2dc2e3dec5e

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0338c808ee2255110ee67aadcfd76ada77a257432e0b3d63e8aee9086df105c6
MD5 a0f3a28041222c5374e40919db72d736
BLAKE2b-256 af53451ee2663c3dd477a00c43aef4a213afea6aae9cd4347875f20119073e18

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b61cc7f4892309411447a101959fb91c98dd2a1a74c3702b31a077c646a2e3f
MD5 2ffc258008b7b729fb1ebe626cd0457e
BLAKE2b-256 ef4667a34e7581a4b1b1390b119710179897b1b275a29fc2784eff8ad1f28bd3

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05f9fcf6f1ceafec09e821a453e892e2a9eba95169a5003a63c35c1cba5ede2d
MD5 7b9e0ada9383d867660c1f4ac2007a8c
BLAKE2b-256 1a522a5a136a180cb946ce34f7c65994bb7f80bdd88571993f089c215743e304

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4d9378e62e0186a48d4f4cdcc19758bc746e630c1d0cebf6cc057d4a28b5e975
MD5 0d1ad42caedd88873f1e1c13cb55b3fd
BLAKE2b-256 6d1506142111e6f51144e22d661f9cc1057c897206404a4b0d59185341c93518

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ffd2ea0dd57105e8f591f9e6ffc468f0216fbb551287fb926da062caf13c055
MD5 fe0dcba91c46ba5808da5b428d1748d2
BLAKE2b-256 595f9703b397f276d568ad2962d2f913663dd5b61259435e59d6edbeb17f2268

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3285793eef663e8206d024eb1ab094d64ae1f40b37a4c7cfe0040154f07af83a
MD5 ee0c7e2754d0ffa2b831dd2f24c15997
BLAKE2b-256 515f9097e4c26af3584ca1f4172267d6f4f38eeda04b6e9a8d07349fc06449a1

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cbbbd98df793c9a2c1accc2a92ab14a6bb4ee9e8ab2e41de62e657ccf612afcb
MD5 6b7a12bbc050fb9b4e62df79264203b9
BLAKE2b-256 5a61e93ec2a0c417a66ef45fa9352f9adc229996a0764c23a9867cab54875730

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e88865dc19fa11651dbd149c9b6e6f4e435f56602169852c829393b1e3e3be26
MD5 689a9cd0cb5623cf54d9d6eb8b3097ff
BLAKE2b-256 6b1813d0a4ecf131c739f2d81a5567646ee3f2a6ec7d5cdbb4f54f3f222196e7

See more details on using hashes here.

File details

Details for the file tiledbsoma-1.3.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tiledbsoma-1.3.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ccbe2fdf1d5e51f4a2a65342db09c497b0a889b44be5ec6931bcf2f5b4a5ec44
MD5 3ac1cd63727d146209f2639dab608db8
BLAKE2b-256 74a6000b1b096124581b659681a0cf2d543961cac2ba8a1a8fd530fa3d0f2677

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page