Skip to main content

A package for converting time series data from e.g. electronic health records into wide format data.

Project description

Timeseriesflattener

github actions docs github actions pytest python versions Code style: black

PyPI version status

Time series from e.g. electronic health records often have a large number of variables, are sampled at irregular intervals and tend to have a large number of missing values. Before this type of data can be used for prediction modelling with machine learning methods such as logistic regression or XGBoost, the data needs to be reshaped.

In essence, the time series need to be flattened so that each prediction time is represented by a set of predictor values and an outcome value. These predictor values can be constructed by aggregating the preceding values in the time series within a certain time window.

timeseriesflattener aims to simplify this process by providing an easy-to-use and fully-specified pipeline for flattening complex time series.

🔧 Installation

To get started using timeseriesflattener simply install it using pip by running the following line in your terminal:

pip install timeseriesflattener

⚡ Quick start

import datetime as dt

import numpy as np
import polars as pl

# Load a dataframe with times you wish to make a prediction
prediction_times_df = pl.DataFrame(
    {"id": [1, 1, 2], "date": ["2020-01-01", "2020-02-01", "2020-02-01"]}
)
# Load a dataframe with raw values you wish to aggregate as predictors
predictor_df = pl.DataFrame(
    {
        "id": [1, 1, 1, 2],
        "date": ["2020-01-15", "2019-12-10", "2019-12-15", "2020-01-02"],
        "predictor_value": [1, 2, 3, 4],
    }
)
# Load a dataframe specifying when the outcome occurs
outcome_df = pl.DataFrame({"id": [1], "date": ["2020-03-01"], "outcome_value": [1]})

# Specify how to aggregate the predictors and define the outcome
from timeseriesflattener import (
    MaxAggregator,
    MinAggregator,
    OutcomeSpec,
    PredictionTimeFrame,
    PredictorSpec,
    ValueFrame,
)

predictor_spec = PredictorSpec(
    value_frame=ValueFrame(
        init_df=predictor_df.lazy(), entity_id_col_name="id", value_timestamp_col_name="date"
    ),
    lookbehind_distances=[dt.timedelta(days=1)],
    aggregators=[MaxAggregator(), MinAggregator()],
    fallback=np.nan,
    column_prefix="pred",
)

outcome_spec = OutcomeSpec(
    value_frame=ValueFrame(
        init_df=outcome_df.lazy(), entity_id_col_name="id", value_timestamp_col_name="date"
    ),
    lookahead_distances=[dt.timedelta(days=1)],
    aggregators=[MaxAggregator(), MinAggregator()],
    fallback=np.nan,
    column_prefix="outc",
)

# Instantiate TimeseriesFlattener and add the specifications
from timeseriesflattener import Flattener

result = Flattener(
    predictiontime_frame=PredictionTimeFrame(
        init_df=prediction_times_df.lazy(), entity_id_col_name="id", timestamp_col_name="date"
    )
).aggregate_timeseries(specs=[predictor_spec, outcome_spec])
result.collect()

Output:

id date prediction_time_uuid pred_test_feature_within_30_days_mean_fallback_nan outc_test_outcome_within_31_days_maximum_fallback_0_dichotomous
0 1 2020-01-01 00:00:00 1-2020-01-01-00-00-00 2.5 0
1 1 2020-02-01 00:00:00 1-2020-02-01-00-00-00 1 1
2 2 2020-02-01 00:00:00 2-2020-02-01-00-00-00 4 0

📖 Documentation

Documentation
🎓 Tutorial Simple and advanced tutorials to get you started using timeseriesflattener
🎛 General docs The detailed reference for timeseriesflattener's API.
🙋 FAQ Frequently asked question
🗺️ Roadmap Kanban board for the roadmap for the project

💬 Where to ask questions

Type
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Issue Tracker
👩‍💻 Usage Questions GitHub Discussions
🗯 General Discussion GitHub Discussions

🎓 Projects

PSYCOP projects which use timeseriesflattener. Note that some of these projects have yet to be published and are thus private.

Project Publications
Type 2 Diabetes Prediction of type 2 diabetes among patients with visits to psychiatric hospital departments

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

timeseriesflattener-2.2.6.tar.gz (9.5 MB view details)

Uploaded Source

Built Distribution

timeseriesflattener-2.2.6-py3-none-any.whl (8.6 MB view details)

Uploaded Python 3

File details

Details for the file timeseriesflattener-2.2.6.tar.gz.

File metadata

  • Download URL: timeseriesflattener-2.2.6.tar.gz
  • Upload date:
  • Size: 9.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/43.0 requests/2.32.2 requests-toolbelt/1.0.0 urllib3/2.2.1 tqdm/4.66.4 importlib-metadata/7.1.0 keyring/25.2.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.14

File hashes

Hashes for timeseriesflattener-2.2.6.tar.gz
Algorithm Hash digest
SHA256 91bc606243f5404effb3c4b998e1fb26cbac398039da1fab4af5f136018eb9ed
MD5 9a02a56094d3e315f59df9d5affc4317
BLAKE2b-256 d83f5cb8d1aad7539a529efce1567b5dbc2f8828d729d3400563ab93f8348159

See more details on using hashes here.

File details

Details for the file timeseriesflattener-2.2.6-py3-none-any.whl.

File metadata

  • Download URL: timeseriesflattener-2.2.6-py3-none-any.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/43.0 requests/2.32.2 requests-toolbelt/1.0.0 urllib3/2.2.1 tqdm/4.66.4 importlib-metadata/7.1.0 keyring/25.2.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.14

File hashes

Hashes for timeseriesflattener-2.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 355d79c3cff2492c253fd9d5cc6bac0d43f3d86ecfd1d9be82ccb5812d73e8ee
MD5 32b45b83d275ac4a2e9d65997e91d46c
BLAKE2b-256 e444f536d82decc2d317d9b261b33ee7dd064288058f441a58ba0113bb5c418e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page