Skip to main content

Tldraw for Jupyter

Project description

Jupyter Tldraw

PyPI version image

Installation:

python3.11 -m venv .venv
pip install jupyterlab
pip install tldraw
jupyterlab   (or alternative VS Code Jupyter Lab)

Example

from tldraw import TldrawWidget
t = TldrawWidget()
t

MakeReal Example

from tldraw import MakeReal
from api_key import api_key

m = MakeReal(width=1002, height = 500, api_key = api_key)
m

INFO: To use GPT4-Vision, you need an API key.

How do I get my API key?

  1. Create an OpenAI account at OpenAI
  2. In your Openai API account, navigate to Settings > Billing
  3. Click Add to credit balance
  4. Add at least $5 to your account
  5. Navigate to API Keys
  6. Click Create new secret key
  7. Copy the key to your clipboard.
  8. Back on your jupyter-tldraw folder, paste the key into the API key into a new file called api_key.py
  9. Add the key in this form: api_key = "sk-*************************".
  10. Add api_key.py into your gitignore. WARNING: Don't upload your API KEY on GitHub!

Now you're ready to run!

For transparency, this is how the key is used:
https://github.com/kolibril13/jupyter-tldraw/blob/main/src/tldraw/prompt.py#L5-L47

Developer Instructions

  1. Clone Repo
  2. npm i
  3. Make virutal env python3.11 -m venv .venv && source .venv/bin/activate
  4. pip install -e ".[dev]"
  5. npm run dev

Changelog

2.0.13

  • fix svgAsImage problem
  • update makereal to gpt4-turbo
  • run_next_cell parameter

2.0.12

  • fix cell selection bug by autoFocus={false}
  • npm i @tldraw/tldraw@2.1.3

2.0.11

  • updating npm install @tldraw/tldraw@2.1.0

2.0.9 & 2.0.10

  • Setting up hatch correctly

2.0.8

  • Update version to @tldraw/tldraw@2.0.2

2.0.7

*increase number of output tokens to 4096

2.0.6

Tweak prompt parameter.

2.0.5

Add requests module Tweak readme

2.0.4

Add experimental SVG/PNG export.
Add experimental .txt export.
Add makereal

2.0.3

Update to version 2.0.0-alpha.19

2.0.2

Add experimental TldrawImageArray

2.0.1

Switch to new version: @tldraw/tldraw@2.0.0-canary.b9d82466295e (Version from 6th November2023)

2.0.0

  • simplify to minimal template

1.0.0

  • Rename notebooks, and prepare 2.0.0 release.

0.1.5

  • add .venv to gitignore, so that it's not uploaded to pypi by hatch build.

0.1.4

  • Add experimental TldrawSegmentation

0.1.3

  • format toml

0.1.2

  • replace ipyreact backend with anywidget backend.
    • this will make this package more reliable, because all js and css is shipped via pip and not anymore via cdn.
  • Remove JupyterLite build.
  • Remove experimental files.

0.1.1

  • add update_plot in TldrawMatplotlib

0.1.0

  • Added TldrawMatplotlib

0.0.3

  • refactor readme
  • add jupyterlite demo

0.0.2

  • refactor code

0.0.1

  • init setup

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tldraw-2.0.13.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

tldraw-2.0.13-py2.py3-none-any.whl (3.6 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file tldraw-2.0.13.tar.gz.

File metadata

  • Download URL: tldraw-2.0.13.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for tldraw-2.0.13.tar.gz
Algorithm Hash digest
SHA256 a3b83f8121ea5b2fef3d16140578f9660f285cb763795265996daacab48e23a3
MD5 17653fc873a11f3691af7ae6652ecf75
BLAKE2b-256 60bf431137614409b22672d3651ecd3322af84ede5a7e981cf5c9a9f6595bfbc

See more details on using hashes here.

File details

Details for the file tldraw-2.0.13-py2.py3-none-any.whl.

File metadata

  • Download URL: tldraw-2.0.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for tldraw-2.0.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9eab659bd20d6051f708cb761fc17ac776c7cda50a3663fd07c7a0d4c95d872b
MD5 831df21e4a510674332436860bbfe1fa
BLAKE2b-256 09faf6f2832ae80d44b1e5a2360a2906164e53edfbde700ae24cbb35f7ee59da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page