Skip to main content

Tldraw for Jupyter

Project description

Jupyter Tldraw

PyPI version image

Installation:

python3.11 -m venv .venv
pip install jupyterlab
pip install tldraw
jupyterlab   (or alternative VS Code Jupyter Lab)

Example

from tldraw import TldrawWidget
t = TldrawWidget()
t

MakeReal Example

from tldraw import MakeReal
from api_key import api_key

m = MakeReal(width=1002, height = 500, api_key = api_key)
m

INFO: To use GPT4-Vision, you need an API key.

How do I get my API key?

  1. Create an OpenAI account at OpenAI
  2. In your Openai API account, navigate to Settings > Billing
  3. Click Add to credit balance
  4. Add at least $5 to your account
  5. Navigate to API Keys
  6. Click Create new secret key
  7. Copy the key to your clipboard.
  8. Back on your jupyter-tldraw folder, paste the key into the API key into a new file called api_key.py
  9. Add the key in this form: api_key = "sk-*************************".
  10. Add api_key.py into your gitignore. WARNING: Don't upload your API KEY on GitHub!

Now you're ready to run!

For transparency, this is how the key is used:
https://github.com/kolibril13/jupyter-tldraw/blob/main/src/tldraw/prompt.py#L5-L47

Developer Instructions

  1. Clone Repo
  2. npm i
  3. Make virutal env python3.11 -m venv .venv && source .venv/bin/activate
  4. pip install -e ".[dev]"
  5. npm run dev

Changelog

2.0.16

add TldrawWidgetCoordinates

2.0.15

  • update tldraw version

2.0.14

  • update to GPT4o

2.0.13

  • fix svgAsImage problem
  • update makereal to gpt4-turbo
  • run_next_cell parameter

2.0.12

  • fix cell selection bug by autoFocus={false}
  • npm i @tldraw/tldraw@2.1.3

2.0.11

  • updating npm install @tldraw/tldraw@2.1.0

2.0.9 & 2.0.10

  • Setting up hatch correctly

2.0.8

  • Update version to @tldraw/tldraw@2.0.2

2.0.7

*increase number of output tokens to 4096

2.0.6

Tweak prompt parameter.

2.0.5

Add requests module Tweak readme

2.0.4

Add experimental SVG/PNG export.
Add experimental .txt export.
Add makereal

2.0.3

Update to version 2.0.0-alpha.19

2.0.2

Add experimental TldrawImageArray

2.0.1

Switch to new version: @tldraw/tldraw@2.0.0-canary.b9d82466295e (Version from 6th November2023)

2.0.0

  • simplify to minimal template

1.0.0

  • Rename notebooks, and prepare 2.0.0 release.

0.1.5

  • add .venv to gitignore, so that it's not uploaded to pypi by hatch build.

0.1.4

  • Add experimental TldrawSegmentation

0.1.3

  • format toml

0.1.2

  • replace ipyreact backend with anywidget backend.
    • this will make this package more reliable, because all js and css is shipped via pip and not anymore via cdn.
  • Remove JupyterLite build.
  • Remove experimental files.

0.1.1

  • add update_plot in TldrawMatplotlib

0.1.0

  • Added TldrawMatplotlib

0.0.3

  • refactor readme
  • add jupyterlite demo

0.0.2

  • refactor code

0.0.1

  • init setup

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tldraw-2.0.16.tar.gz (3.7 MB view details)

Uploaded Source

Built Distribution

tldraw-2.0.16-py2.py3-none-any.whl (3.7 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file tldraw-2.0.16.tar.gz.

File metadata

  • Download URL: tldraw-2.0.16.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for tldraw-2.0.16.tar.gz
Algorithm Hash digest
SHA256 aef80778268172c241f3b9f2c0c66da1987754d534c362e3b076c5dfa01cf20a
MD5 d52be09f339f934f4f305f5ac4e27cdb
BLAKE2b-256 40f3914102be9af6db5a48c31f9df83b01447154cee3e1729977ffa9bb3cd547

See more details on using hashes here.

File details

Details for the file tldraw-2.0.16-py2.py3-none-any.whl.

File metadata

  • Download URL: tldraw-2.0.16-py2.py3-none-any.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for tldraw-2.0.16-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a23d30b0806ba705dbb2b80624f11c250fc3a950f742ae877e45f946b27edbd3
MD5 e24419b0e99484346542056bf111c826
BLAKE2b-256 efab766e89e1f48fe3a2a111e65235797080b530a50fd67e05e58df27d0ea5ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page