Skip to main content

Fast and Customizable Tokenizers

Project description



Build GitHub


Tokenizers

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.

Bindings over the Rust implementation. If you are interested in the High-level design, you can go check it there.

Otherwise, let's dive in!

Main features:

  • Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3 most common BPE versions).
  • Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
  • Easy to use, but also extremely versatile.
  • Designed for research and production.
  • Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
  • Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

Installation

With pip:

pip install tokenizers

From sources:

To use this method, you need to have the Rust installed:

# Install with:
curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$HOME/.cargo/bin:$PATH"

Once Rust is installed, you can compile doing the following

git clone https://github.com/huggingface/tokenizers
cd tokenizers/bindings/python

# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate

# Install `tokenizers` in the current virtual env
pip install setuptools_rust
python setup.py install

Load a pretrained tokenizer from the Hub

from tokenizers import Tokenizer

tokenizer = Tokenizer.from_pretrained("bert-base-cased")

Using the provided Tokenizers

We provide some pre-build tokenizers to cover the most common cases. You can easily load one of these using some vocab.json and merges.txt files:

from tokenizers import CharBPETokenizer

# Initialize a tokenizer
vocab = "./path/to/vocab.json"
merges = "./path/to/merges.txt"
tokenizer = CharBPETokenizer(vocab, merges)

# And then encode:
encoded = tokenizer.encode("I can feel the magic, can you?")
print(encoded.ids)
print(encoded.tokens)

And you can train them just as simply:

from tokenizers import CharBPETokenizer

# Initialize a tokenizer
tokenizer = CharBPETokenizer()

# Then train it!
tokenizer.train([ "./path/to/files/1.txt", "./path/to/files/2.txt" ])

# Now, let's use it:
encoded = tokenizer.encode("I can feel the magic, can you?")

# And finally save it somewhere
tokenizer.save("./path/to/directory/my-bpe.tokenizer.json")

Provided Tokenizers

  • CharBPETokenizer: The original BPE
  • ByteLevelBPETokenizer: The byte level version of the BPE
  • SentencePieceBPETokenizer: A BPE implementation compatible with the one used by SentencePiece
  • BertWordPieceTokenizer: The famous Bert tokenizer, using WordPiece

All of these can be used and trained as explained above!

Build your own

Whenever these provided tokenizers don't give you enough freedom, you can build your own tokenizer, by putting all the different parts you need together. You can check how we implemented the provided tokenizers and adapt them easily to your own needs.

Building a byte-level BPE

Here is an example showing how to build your own byte-level BPE by putting all the different pieces together, and then saving it to a single file:

from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors

# Initialize a tokenizer
tokenizer = Tokenizer(models.BPE())

# Customize pre-tokenization and decoding
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)

# And then train
trainer = trainers.BpeTrainer(
    vocab_size=20000,
    min_frequency=2,
    initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
tokenizer.train([
    "./path/to/dataset/1.txt",
    "./path/to/dataset/2.txt",
    "./path/to/dataset/3.txt"
], trainer=trainer)

# And Save it
tokenizer.save("byte-level-bpe.tokenizer.json", pretty=True)

Now, when you want to use this tokenizer, this is as simple as:

from tokenizers import Tokenizer

tokenizer = Tokenizer.from_file("byte-level-bpe.tokenizer.json")

encoded = tokenizer.encode("I can feel the magic, can you?")

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tokenizers-0.11.6.tar.gz (221.1 kB view details)

Uploaded Source

Built Distributions

tokenizers-0.11.6-cp310-cp310-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

tokenizers-0.11.6-cp310-cp310-win32.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86

tokenizers-0.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (7.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

tokenizers-0.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tokenizers-0.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tokenizers-0.11.6-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tokenizers-0.11.6-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tokenizers-0.11.6-cp310-cp310-macosx_10_11_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.11+ x86-64

tokenizers-0.11.6-cp39-cp39-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tokenizers-0.11.6-cp39-cp39-win32.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86

tokenizers-0.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

tokenizers-0.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tokenizers-0.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tokenizers-0.11.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tokenizers-0.11.6-cp39-cp39-macosx_12_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tokenizers-0.11.6-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tokenizers-0.11.6-cp39-cp39-macosx_10_11_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.11+ x86-64

tokenizers-0.11.6-cp38-cp38-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tokenizers-0.11.6-cp38-cp38-win32.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86

tokenizers-0.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (7.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

tokenizers-0.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tokenizers-0.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tokenizers-0.11.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tokenizers-0.11.6-cp38-cp38-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tokenizers-0.11.6-cp38-cp38-macosx_10_11_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.11+ x86-64

tokenizers-0.11.6-cp37-cp37m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tokenizers-0.11.6-cp37-cp37m-win32.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86

tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (7.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tokenizers-0.11.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tokenizers-0.11.6-cp37-cp37m-macosx_10_11_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.11+ x86-64

tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (7.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tokenizers-0.11.6-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tokenizers-0.11.6-cp36-cp36m-macosx_12_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.6m macOS 12.0+ ARM64

File details

Details for the file tokenizers-0.11.6.tar.gz.

File metadata

  • Download URL: tokenizers-0.11.6.tar.gz
  • Upload date:
  • Size: 221.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6.tar.gz
Algorithm Hash digest
SHA256 562b2022faf0882586c915385620d1f11798fc1b32bac55353a530132369a6d0
MD5 6d8a7d0799d234df817141253452bf7b
BLAKE2b-256 c6adf1d539784a41747e76f3d543bedcb3b255ff677b4f113e362743ede6384f

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3c1ad5d230bdd6a3f63bbffd16a9fdea6a049ceb6d225e4d70a2664853f40aaf
MD5 7e68cb55338866304579860f1e150a21
BLAKE2b-256 919b34a4135b4ffe71b8a9d2b3550c6d7919e628b0fbc1551392e634724165fe

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6bc5cc6d5b17bf8222049a2c97bcc117974793e37fb2e42b8fb04b2ef984d165
MD5 aea51082fbe27c872878c04ae1d25ccd
BLAKE2b-256 a29f0ad48cf1e9fb61b50937d9b0bebd60bd420238fa6125cb5d336a3e2547c1

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 46a763d1f43f46448e41884356f105a2f067b6e573c7e0c67d8f93512304b22c
MD5 2ade9adbe9632e30e6fa3a1195205838
BLAKE2b-256 8a6109c5224ab66fbc62978a703e1ae7e51feac2c83633db4c8e9c60ecf908a3

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3fde9a1e7d18caddff3ac13baf4e31235688b0db2ba42bbc8179dc878327560a
MD5 86602f515a0555ef149f2c23c664ac61
BLAKE2b-256 99c727f45928247dd01af8fe3a2f02f339a13d2f62c71cde78fb027114736b76

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7d8ea3a05b593e5744c4ad0e6e2cbba6f82588c302d663855316c1861c09557
MD5 635c5554d9f3a957c4103ead8952c178
BLAKE2b-256 d95506835c5c45f18fa5965dd5aac66ca5472f7acb279969b45c409dadaf3e49

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f7b82aaedb24e0a4dcd8fe77a79de9a0acf43db8ae173cdb4eca1e767566b47
MD5 adeee300f6fe2d825bed557a73a980a5
BLAKE2b-256 297636c05a1082749a8daaef9044e9be9ad52b048691599e7d93e6d3ff59fcbb

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c5a786fe12a4c1782337abc818fc48ca84e07f8cb0eeab263a27fcd30f7fc6f
MD5 fcbcff2b78de30cdbf81fe986918cc41
BLAKE2b-256 27938214a4670a743b5a6d78877c1751ef705b39104f0c1e1c0a552fbae4e625

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp310-cp310-macosx_10_11_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp310-cp310-macosx_10_11_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, macOS 10.11+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp310-cp310-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 c24f3e0e69edf015efab6bea0a24d45eb19f477106d00a739c19d2a02f6085fc
MD5 87aa0381a359b7a9ddbd004fe398370d
BLAKE2b-256 2f2cb577c144a05e03a5803ac5b82381f67529734917f10a40dc154d85161d7f

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b28966c68a2cdecd5120f4becea159eebe0335b8202e21e292eb381031026edc
MD5 f703956d3c01f1c8bf72675ea51d189e
BLAKE2b-256 77a52f6f2c25fb9f3a237aa326a8f3b3fe7a7aae6331136325cf2418dcbc9b89

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 468c3e3f414a532924fa277a58807e127a27d2a56b04113540ea755fc5ca9ba8
MD5 6e8c7d00a2654332237b4505857b776d
BLAKE2b-256 add1cb3f0171c43759b543004b45144c1d8b71f1b9a580faff3d6a4f253f55e6

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0d4f67758f62d64410e86d548c2c38ca5e59310ca38c18e8239637213c49e2fb
MD5 66ffc79c59239e3e2b11702308123ffb
BLAKE2b-256 59987c9b4cf43d8fb2d732d4c3a935e48d42da59d484d145f03c901b38fb38ff

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 47878a49211f8df63f7ec7de62f13b1c65e68be501f6a98b28f4bbb8d3390f25
MD5 83fda1ae962554de06f189d8c2533a01
BLAKE2b-256 24a961291aa2ca0ee1ccee928da42945ce0d44980b3467396174a7d990d617de

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8afc3c76268cdef4567f84a19d9c06fdd697b22f5142d1af18254ec70703db7b
MD5 70c39330c45921d8c3d7e58be4874434
BLAKE2b-256 736c93d95d9834b0ea429daddce5f2bcc52c51f494312f46e4cf8733cee97a1b

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e75efa0275665ca30536c75dc5b4d33492fc40ae40c90d9085bdcdb99e060044
MD5 fbcbf1c8ccc2a318badb645983cc7f1c
BLAKE2b-256 1347f7c1c0f523597d885b95aeeed4bfb05466cad8f0ac12f65b66c04e880c9d

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b9a34bd33d866862f45bfc4a409563132a0b6af5951e08f3ccfde36152cd7683
MD5 db1c2b94bb591cd4943a5d8b5abf1347
BLAKE2b-256 b8dd89cceb1acb9cf30eec49e89afde082cca97edd26bf467fbf54a9f87aacbb

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b3829ad386747760e7d805c9ffd5cb5a9309679467029eea3162fb76c8c89dc
MD5 28848016a91521e1436479c0faf2d014
BLAKE2b-256 2b68c4b394c83695c0a09c97ab06380a0021c102639b1fbd70b6c6c980db64e4

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp39-cp39-macosx_10_11_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp39-cp39-macosx_10_11_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, macOS 10.11+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp39-cp39-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 809b506a6e9f2f6cba86cfe642c1d1e82cbd758574bdc1207efe07229d6fa4d4
MD5 5e9353d2adedbb5640c9a18f5b8efe26
BLAKE2b-256 5f90c2e1432fa89637265668473dc4a54e0a2108624b58a563cfdc6788793f11

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3c1c6e10f655e0f57b9bb9a64ac4b7ea70d20a73f8013f8bd38d21d64d45d96a
MD5 a645bd1722653013d9c505c7e036ddfd
BLAKE2b-256 3eb1762427feb3a942eb16c88b2b45f6f934d63616ae01d887078819c1495c5d

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fd3fccc801b7621eca8dfd876494fad0b00bd43fc73afdc1c11d6be3c9136f78
MD5 08b3a9fad9fa353060e01f0fa9b95aa4
BLAKE2b-256 a696b7bdac79da2d6fd05f3803821ae3408680c427229e591e7507ad3f2ae23c

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 251978daef3b57257bd313df7ef705aacc6cd5831644f6e2e8a42e2c7b7c4a30
MD5 5d54de5084f18b56e17536f2aad6ec06
BLAKE2b-256 28b5dd212939e998f1ae38753326b33a40d07926002c258f3f2d4a61730ad561

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d393eb6b79ab972e6ebede2aa330903913cf380f6fe975d64a92fca15b5d8579
MD5 d9b943e2792366173e0287164eeb6b69
BLAKE2b-256 af70beee8246820866fa9ccb02eea72f1001d764bf0c5da77c46d5f0c9d7ce81

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c5ae264b75b7355db2bc3f34e8e3eb608fcca799ff9a109f3d61e4d9614f947
MD5 f74bef2113516bd1688871bcdfe07007
BLAKE2b-256 81fc2bcdf379c0e0ab0231cb31d2bec20d1574d5e79f40cbb487ba6ca6e2de96

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7074162348a7784faccbea18cf814138483ce0c47eb17dc482cbc4bbbde8a00c
MD5 0bc714d0770dd3fd812bcc37832fe0a7
BLAKE2b-256 519c60efcefec8b6ef7c30207d4fd6141495debc29cae7f2577f1ece9f7b0dc2

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6d02076160d60966d6b2b320744affe6b846ee10a37d1c0222b6ca9e640bdb8
MD5 5e1b25884360ed8869911dd371362108
BLAKE2b-256 8bf8ebeb4d6b65b026cd39384f0dbd5d20c8e10180dd826b069a4a50827a844a

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp38-cp38-macosx_10_11_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp38-cp38-macosx_10_11_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, macOS 10.11+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp38-cp38-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 216745a6e92eb52d99b56123e6fece59e0dcf7bd1444f42bee09e1f02c89bbec
MD5 62e7426fd971544b16de90d42383fade
BLAKE2b-256 abc234e886390a065b463bfa435426d990a50d2184fedab4e034a2dc8e37329d

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6840554a8cac1196db627d42edbf77f4b5decf6ce6fa9ca073efaaa2cff887a6
MD5 02f23c2c80332287596e4b18f3c491e6
BLAKE2b-256 cbfd0fbfd3f0444a3eecbe5537d64ea45a78b111a80bae49b95eaa5f19d6c8ea

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7ed928ac19a3397af6fe3716b313fb13dcaf54978f0fc159eeabaff8e35e5c92
MD5 f0f75cd791b528c5222bb35d685fd126
BLAKE2b-256 50926082f70b458f9d109b219d03d946265b1c63ef1a8d15c16db7a7c8587661

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 79074927fc9efaf13b3accd53246e50ade37550920077411ab55bd5ed4944153
MD5 2f01fa6aa2c5d152032540d3bbbc747a
BLAKE2b-256 96c560098e3f262dc80ccffa59eaf08efe7cfbabcafdf1181b1df8a5bdef05d7

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6259833c189e36c29e84a853b9503028324a3b176a2ae3980c815456d326b652
MD5 1428625e691ce089000ae76c15ed08ea
BLAKE2b-256 577412152600275cfb8d8dcfb45cf3776dc86736872241e9f53f2b6278700b5a

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c72383a918e9fef9c2bf4666a961f3b312361fb027165b4446ff333441ebf91
MD5 f4f70621a8741cfbcd6c02d12d4e7e16
BLAKE2b-256 a6c460c8a13245adbd86efce68fface5b6ef26195e82492a931fdf1f05c5b45d

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 820a4cc3ef39c556c6f9495ce7cbd169098ca352e073ed3b34d6b74b53df2fbb
MD5 cf51bd8e0208f1a13d05d634b1f1fb97
BLAKE2b-256 26a87639c2ab8fae251d646f903ac4a87e54b4ee4dfd646696d76f803d3084b7

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp37-cp37m-macosx_10_11_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp37-cp37m-macosx_10_11_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, macOS 10.11+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp37-cp37m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 c08d5745fb5852adeeffc6bfbe13b77cd95d3f49e7e6129537858c5fb9b7142c
MD5 34088db5d30dcb29eabda7e67c8bb6a5
BLAKE2b-256 ce2e83398f5fb3fb5bad3489c432760e32a554edf05c8af2e88acb7a4ab26351

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
  • Upload date:
  • Size: 7.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 38420ddd3b47d6f13be20bfecd928f4301c8cbebd1a752a7436c22fe01b3f6c4
MD5 a16b5fd920e6cc0e279c1f2b1b01a19a
BLAKE2b-256 a06ef933e809ecb2b6d7ae5ab34bac4ff8e2cdec06aa3532a55e3a18692cb76c

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 34ac8450ad93e4dae1c72b7ad6c6a74d2941a68beb25df25d05b2b371267daba
MD5 2f058d53b496a2b98c103d60df12ef6b
BLAKE2b-256 f28ec5ee00035a66f69d1a8571b54b13392389d9793c2f4b7fa17c16216edbf6

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0deaa700f9e442ed4bb4fe2c6482979b3709772bcce2dd7b89dc586ec39ce2e
MD5 4a60d6fe4d832b3a2cc8b891d546b0cc
BLAKE2b-256 315ce6a2358c3891ed6a603ff8d3b7b96a232f9312c46a58952b5b5c2cdbd798

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.2

File hashes

Hashes for tokenizers-0.11.6-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0975b9f06f982580909f9fa769baf58b806ab2d099daccc43dc95d60bf56817a
MD5 1e3f7f8459021fc7e8ae5f64f9b473cb
BLAKE2b-256 0c2ce47d5d3040a3faa5633a7018594717c8460d62d173b8d06339f9d171f5cc

See more details on using hashes here.

File details

Details for the file tokenizers-0.11.6-cp36-cp36m-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tokenizers-0.11.6-cp36-cp36m-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.6m, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tokenizers-0.11.6-cp36-cp36m-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 44697b08469dfe3265a851f87ad41c7f04efa511ada8182b6b08aa809765dcb8
MD5 e5118c079a36fd4751dcbacdab566784
BLAKE2b-256 b8d1699ca71182aa8843864728d2b4b797b65b1c70d81de38385eacf1e9a2b56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page