Skip to main content

Utility functions that prints a summary of a model.

Project description

torch-inspect

https://travis-ci.com/jettify/pytorch-inspect.svg?branch=master https://codecov.io/gh/jettify/pytorch-inspect/branch/master/graph/badge.svg

torch-inspect – collection of utility functions to inspect low level information of neural network for PyTorch

Features

  • Provides helper function summary that prints Keras style model summary.

  • Provides helper function inspect that returns object with network summary information for programmatic access.

  • Library has tests and reasonable code coverage.

Simple example

import torch.nn as nn
import torch.nn.functional as F
import torch_inspect as ti

class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 6 * 6, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


  net = SimpleNet()
  ti.summary(net, (1, 32, 32), device='cpu')

Will produce following output:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1            [-1, 6, 30, 30]              60
            Conv2d-2           [-1, 16, 13, 13]             880
            Linear-3                  [-1, 120]          69,240
            Linear-4                   [-1, 84]          10,164
            Linear-5                   [-1, 10]             850
================================================================
Total params: 81,194
Trainable params: 81,194
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.31
Estimated Total Size (MB): 0.38
----------------------------------------------------------------

For programmatic access to network information there is inspect function:

info = ti.inspect(net, (1, 32, 32), device='cpu')
print(info)
[LayerInfo(name='Conv2d-1', input_shape=[10, 1, 32, 32], output_shape=[10, 6, 30, 30], trainable=True, nb_params=60),
 LayerInfo(name='Conv2d-2', input_shape=[10, 6, 15, 15], output_shape=[10, 16, 13, 13], trainable=True, nb_params=880),
 LayerInfo(name='Linear-3', input_shape=[10, 576], output_shape=[10, 120], trainable=True, nb_params=69240),
 LayerInfo(name='Linear-4', input_shape=[10, 120], output_shape=[10, 84], trainable=True, nb_params=10164),
 LayerInfo(name='Linear-5', input_shape=[10, 84], output_shape=[10, 10], trainable=True, nb_params=850)]

Installation

Installation process is simple, just:

$ pip install torch-inspect

Requirements

References and Thanks

This package is based on pytorch-summary and PyTorch issue

Changes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-inspect-0.0.1.tar.gz (10.7 kB view details)

Uploaded Source

File details

Details for the file torch-inspect-0.0.1.tar.gz.

File metadata

  • Download URL: torch-inspect-0.0.1.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for torch-inspect-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e51278937ceb6830f5064230327bb041ce3548539e21394bb43964125ee62cbb
MD5 d9270fbb27be89490f46814385333870
BLAKE2b-256 5a46213edd5f48dd0e6b1564d15842de62715f16d47cb643543e5dd091d2de5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page