Skip to main content

Utility functions that prints a summary of a model.

Project description

torch-inspect

https://travis-ci.com/jettify/pytorch-inspect.svg?branch=master https://codecov.io/gh/jettify/pytorch-inspect/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/torch-inspect.svg https://img.shields.io/pypi/v/torch-inspect.svg

torch-inspect – collection of utility functions to inspect low level information of neural network for PyTorch

Features

  • Provides helper function summary that prints Keras style model summary.

  • Provides helper function inspect that returns object with network summary information for programmatic access.

  • RNN/LSTM support.

  • Library has tests and reasonable code coverage.

Simple example

import torch.nn as nn
import torch.nn.functional as F
import torch_inspect as ti

class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 6 * 6, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


  net = SimpleNet()
  ti.summary(net, (1, 32, 32))

Will produce following output:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [100, 6, 30, 30]              60
            Conv2d-2          [100, 16, 13, 13]             880
            Linear-3                 [100, 120]          69,240
            Linear-4                  [100, 84]          10,164
            Linear-5                  [100, 10]             850
================================================================
Total params: 81,194
Trainable params: 81,194
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.39
Forward/backward pass size (MB): 6.35
Params size (MB): 0.31
Estimated Total Size (MB): 7.05
----------------------------------------------------------------

For programmatic access to network information there is inspect function:

info = ti.inspect(net, (1, 32, 32))
print(info)
[LayerInfo(name='Conv2d-1', input_shape=[100, 1, 32, 32], output_shape=[100, 6, 30, 30], trainable_params=60, non_trainable_params=0),
 LayerInfo(name='Conv2d-2', input_shape=[100, 6, 15, 15], output_shape=[100, 16, 13, 13], trainable_params=880, non_trainable_params=0),
 LayerInfo(name='Linear-3', input_shape=[100, 576], output_shape=[100, 120], trainable_params=69240, non_trainable_params=0),
 LayerInfo(name='Linear-4', input_shape=[100, 120], output_shape=[100, 84], trainable_params=10164, non_trainable_params=0),
 LayerInfo(name='Linear-5', input_shape=[100, 84], output_shape=[100, 10], trainable_params=850, non_trainable_params=0)]

Installation

Installation process is simple, just:

$ pip install torch-inspect

Requirements

References and Thanks

This package is based on pytorch-summary and PyTorch issue . Compared to pytorch-summary, pytorch-inspect has support of RNN/LSTMs, also provides programmatic access to the network summary information. With a bit more modular structure and presence of tests it is easier to extend and support more features.

Changes

0.0.3 (2019-09-22)

  • Added LSTM support

  • Fixed multi input/output support

  • Added more network test cases

  • Batch size no longer -1 by default

0.0.2 (2019-09-22)

  • Added batch norm support

  • Removed device parameter

0.0.1 (2019-09-1)

  • Initial release.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-inspect-0.0.3.tar.gz (14.5 kB view details)

Uploaded Source

File details

Details for the file torch-inspect-0.0.3.tar.gz.

File metadata

  • Download URL: torch-inspect-0.0.3.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for torch-inspect-0.0.3.tar.gz
Algorithm Hash digest
SHA256 12a06812109cb2bad0a46eeb3216c65dc6eca063dade1327c563876c6a8fc59b
MD5 d7687d16a98c09fd772880fa12fe2b3a
BLAKE2b-256 0f5ed1df8aaeb433c32ece64b9e7df82f0f0abd5ec18b441a7bf18e2d60fd5bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page