Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter. Compatible with torch>=2.1.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(report=True, verify=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.1.25.tar.gz (72.8 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.1.25-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.1.25.tar.gz.

File metadata

  • Download URL: torch_onnx-0.1.25.tar.gz
  • Upload date:
  • Size: 72.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.10

File hashes

Hashes for torch_onnx-0.1.25.tar.gz
Algorithm Hash digest
SHA256 cddcc6089cbfdd3e5ab65dc8ed93249e257215eb0f6c068ffa7377d6ef6b767e
MD5 2afd465c52a603b4b6f705a2bdc9ef06
BLAKE2b-256 87bc454c57e61e47875245230491313cd5813ce15eb3aa8633e8064008097924

See more details on using hashes here.

File details

Details for the file torch_onnx-0.1.25-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.1.25-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.10

File hashes

Hashes for torch_onnx-0.1.25-py3-none-any.whl
Algorithm Hash digest
SHA256 a9ce6d5fe4d77c4e697cf97dbbf919a1b77834b299a9e9debd2a25d5415ce68d
MD5 529db9f902eca1428f9e6349f79459ba
BLAKE2b-256 9686a5bae457e4fceb61cf873789e59f265f83bac0380ffb607abba42ba472a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page