Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
# This will give you an ATen dialect graph (un-lowered ONNX graph with ATen ops)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(error_report=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{ExportedProgram, jit} -> {ONNX IR} -> {torchlib} -> {ONNX}

  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Build graph eagerly, in place
    • Expose shape and dtype information to the op functions; build with IR

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.0.10.tar.gz (31.0 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.0.10-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.0.10.tar.gz.

File metadata

  • Download URL: torch_onnx-0.0.10.tar.gz
  • Upload date:
  • Size: 31.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.10.tar.gz
Algorithm Hash digest
SHA256 1a8c74dfbb9c57be8f96ff3fd666f2f29141c899e8b6b9f581944559e1501af0
MD5 b643c221279f065fc779d0a502a45348
BLAKE2b-256 637e5436e243e68e1606edade6487959d9e9d60223415759c884fff17dfc5ff4

See more details on using hashes here.

File details

Details for the file torch_onnx-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 1694dca38ab820248479cae3270c0ad5a4fceb61b2f8d871d05011038860b617
MD5 91804d56c7d9d484b5330ca7bc19cb71
BLAKE2b-256 555ed1eb6f266e18e2b4f310e09b99669fb1be18c122467beeee1ba1e593c965

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page