Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
# This will give you an ATen dialect graph (un-lowered ONNX graph with ATen ops)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(error_report=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{ExportedProgram, jit} -> {ONNX IR} -> {torchlib} -> {ONNX}

  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Build graph eagerly, in place
    • Expose shape and dtype information to the op functions; build with IR

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.0.13.tar.gz (35.6 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.0.13-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.0.13.tar.gz.

File metadata

  • Download URL: torch_onnx-0.0.13.tar.gz
  • Upload date:
  • Size: 35.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.13.tar.gz
Algorithm Hash digest
SHA256 11ccbb92eed98814d9ebd81dce9ced52a57326e5ca07e30743ff91854623e183
MD5 220a2b947b52f1ebbe9ca82e2e21040a
BLAKE2b-256 2168a4ad6e70932df9c97e929acc90011d90796bb3e5682fd5d4c814719cecac

See more details on using hashes here.

File details

Details for the file torch_onnx-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 dfdb0f062c61bc2d00e03df05c6bddfdc29f15333887e617da48f5d11e8652a5
MD5 4f1ec35f93452d14ab50e183a955b14c
BLAKE2b-256 e396497590a1e42e3a692da0ed880b11a19e7f6926802eaf99bae8608a9d1482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page