Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(error_report=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.0.30.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.0.30-py3-none-any.whl (57.6 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.0.30.tar.gz.

File metadata

  • Download URL: torch_onnx-0.0.30.tar.gz
  • Upload date:
  • Size: 51.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.30.tar.gz
Algorithm Hash digest
SHA256 787d3b0a99a67e0de09e6e0c018e62c03387935de7c79956a944bb09d945c270
MD5 96002f5c6c872813ae6514ef504263d9
BLAKE2b-256 3a102843f6e5a4031e3d16235eec834cfbbc596ffd563e4d9f5baa4051d29707

See more details on using hashes here.

File details

Details for the file torch_onnx-0.0.30-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.0.30-py3-none-any.whl
  • Upload date:
  • Size: 57.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.30-py3-none-any.whl
Algorithm Hash digest
SHA256 ba86235aae014a9912e916ad3e6870cc84810d5ec659fd1ec5a5ae06f70be019
MD5 ad17c5eceab704d56d3fa4ac4e6b5105
BLAKE2b-256 72e05ad02ea8b93a9c3d65f541aa3570208adeef248fe5fdb4f23d17aaff2279

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page