Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(error_report=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.0.33.tar.gz (54.1 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.0.33-py3-none-any.whl (60.5 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.0.33.tar.gz.

File metadata

  • Download URL: torch_onnx-0.0.33.tar.gz
  • Upload date:
  • Size: 54.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.33.tar.gz
Algorithm Hash digest
SHA256 8df47f29666d061fe9b71edb5ea1f3f082affb2430356f940488a6c758329068
MD5 5a91e4046295d5b016cb3b2bbc41d2bd
BLAKE2b-256 2765292c0976492a0954f591713aaca52f355a6dd2137310ab92bd2a8be759a8

See more details on using hashes here.

File details

Details for the file torch_onnx-0.0.33-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.0.33-py3-none-any.whl
  • Upload date:
  • Size: 60.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 5b14a4aa98825a299efbac8d14d3958cd0a3150329b68a4319671cea343ef689
MD5 73c1bc81761efae6c903e698a344d8ac
BLAKE2b-256 39419cf17479e56685f56492291ebb3847627205bb5fc7a0606145d77b940ac3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page