Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(error_report=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.0.35.tar.gz (54.4 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.0.35-py3-none-any.whl (61.0 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.0.35.tar.gz.

File metadata

  • Download URL: torch_onnx-0.0.35.tar.gz
  • Upload date:
  • Size: 54.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.35.tar.gz
Algorithm Hash digest
SHA256 2ae058a21d2ce6e9a265292b1a0db75b54a717bee31d7e0335fd98671162bcb1
MD5 f7f53a29916e5f9dd4a9e73c43c09305
BLAKE2b-256 466d07931d7f49ec5c6995fc7a263ccf5d607cbf95af770f8bd47b659796baa0

See more details on using hashes here.

File details

Details for the file torch_onnx-0.0.35-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.0.35-py3-none-any.whl
  • Upload date:
  • Size: 61.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.0.35-py3-none-any.whl
Algorithm Hash digest
SHA256 7a483d7b22242959441834bad4f991d83c63d673b5017490db637c19d2ad1d11
MD5 e6ddfe23455d5c091954f97701e634f8
BLAKE2b-256 d2a0de29a4ac46b5655f476d10f71fd90a30921f63c43c86233526b68ce8c9bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page