Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(report=True, verify=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.1.0.tar.gz (56.8 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.1.0-py3-none-any.whl (63.5 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.1.0.tar.gz.

File metadata

  • Download URL: torch_onnx-0.1.0.tar.gz
  • Upload date:
  • Size: 56.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.0.tar.gz
Algorithm Hash digest
SHA256 44edc2e34b04015e8a4066680c37b794e18e2d0dae8dc92f4ac139160dee976d
MD5 32a12c0397fa547c41b72c15b4e8dca8
BLAKE2b-256 a88d72d8c07332e4916072b2316c6e755659f371fc8e3ccb3b1c857824ecacd1

See more details on using hashes here.

File details

Details for the file torch_onnx-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 63.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 535065b1e75e8e16828e3171ca5d0d51a751361625e4f58e33fc23bb5e44b59c
MD5 f3b04eafa47051096d5a15fc78432472
BLAKE2b-256 7f50b2ea26737b12b054b09ca17105ecfce8bcd1d946e740ead9e53f4f360488

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page