Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(report=True, verify=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.1.11.tar.gz (63.6 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.1.11-py3-none-any.whl (70.5 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.1.11.tar.gz.

File metadata

  • Download URL: torch_onnx-0.1.11.tar.gz
  • Upload date:
  • Size: 63.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.11.tar.gz
Algorithm Hash digest
SHA256 2dbfdd7e323333676de5b5e04ac1a39f9b674eb1d5358f599f5b0c5da6bf0c77
MD5 98c889899bb98ddb3622ead23e26581c
BLAKE2b-256 8016cd1b3adbfda2fb47556684c0ec6223456179710783b0d483e9d92cbe21fa

See more details on using hashes here.

File details

Details for the file torch_onnx-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 70.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 3a299ca705fe2141dd40d5a677cb37751953973b180b54521a54c71f2e94eac6
MD5 abc098a592a791c02c808fea198b647e
BLAKE2b-256 eb200481ca23b903c1e96d21f51d7610ee2fd2d7bdf76a7b78e3977d8f179741

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page