Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(report=True, verify=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.1.15.tar.gz (67.6 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.1.15-py3-none-any.whl (75.4 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.1.15.tar.gz.

File metadata

  • Download URL: torch_onnx-0.1.15.tar.gz
  • Upload date:
  • Size: 67.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.15.tar.gz
Algorithm Hash digest
SHA256 dd52674405f22c7d2ab73e6a9459f9d2919e276091aa576cb2b88bea708d5dbc
MD5 13fe5b22d30ff630e65351609426d7d5
BLAKE2b-256 c925b9e20ea0f10ec77961499416cf12190a5c3eeff377e37f8f7b78f734d3b8

See more details on using hashes here.

File details

Details for the file torch_onnx-0.1.15-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.1.15-py3-none-any.whl
  • Upload date:
  • Size: 75.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 8f24b1a3502dd5eeff747827aa2a73899c7dda18e407dc7afe3d52a9ffe65354
MD5 2bec577c0e001c6f50967009ee810843
BLAKE2b-256 cda41b4ae99ff13a766d490c447cefa1e7c252f4ca57a4498799eaeae3fc01f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page