Skip to main content

Experimental tools for converting PyTorch models to ONNX

Project description

PyTorch to ONNX Exporter

PyPI version

Experimental torch ONNX exporter. Compatible with torch>=2.1.

[!WARNING] This is an experimental project and is not designed for production use. Use torch.onnx.export for these purposes.

Installation

pip install --upgrade torch-onnx

Usage

import torch
import torch_onnx
from onnxscript import ir
import onnx

# Get an exported program with torch.export
exported = torch.export.export(...)
model = torch_onnx.exported_program_to_ir(exported)
proto = ir.to_proto(model)
onnx.save(proto, "model.onnx")

# Or patch the torch.onnx export API
# Set error_report=True to get a detailed error report if the export fails
torch_onnx.patch_torch(report=True, verify=True, profile=True)
torch.onnx.export(...)

# Use the analysis API to print an analysis report for unsupported ops
torch_onnx.analyze(exported)

Design

{dynamo/jit} -> {ExportedProgram} -> {torchlib} -> {ONNX IR} -> {ONNX}

  • Use ExportedProgram
    • Rely on robustness of the torch.export implementation
    • Reduce complexity in the exporter
    • This does not solve dynamo limitations, but it avoids introducing additional breakage by running fx passes
  • Flat graph; Scope info as metadata, not functions
    • Because existing tools are not good at handling them
  • Eager optimization where appropriate
    • Because exsiting tools are not good at optimizing
  • Drop in replacement for torch.onnx.export
    • Minimum migration effort
  • Build graph eagerly in the exporter
    • Give the exporter full control over the graph being built

Why is this doable?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_onnx-0.1.22.tar.gz (72.2 kB view details)

Uploaded Source

Built Distribution

torch_onnx-0.1.22-py3-none-any.whl (80.7 kB view details)

Uploaded Python 3

File details

Details for the file torch_onnx-0.1.22.tar.gz.

File metadata

  • Download URL: torch_onnx-0.1.22.tar.gz
  • Upload date:
  • Size: 72.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.22.tar.gz
Algorithm Hash digest
SHA256 47a25153ad3c8c4be28a2fc40246c4a4580cf0d66498269a66310fe70660da2e
MD5 49e4e09f9e39dd76a9d506c78a835cc0
BLAKE2b-256 bfc52f19168303f39948df62e2be65011b4f3a03147c48fc59f4523e023cc247

See more details on using hashes here.

File details

Details for the file torch_onnx-0.1.22-py3-none-any.whl.

File metadata

  • Download URL: torch_onnx-0.1.22-py3-none-any.whl
  • Upload date:
  • Size: 80.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for torch_onnx-0.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 b232e7f9fd322e8bdb9b9f3e163ae5bf264c5924984a638c3502d92057de7f10
MD5 55ba054bbe9d3fa99c04b0bc95ab520d
BLAKE2b-256 14c3b8a03d51b84e9bc55fbf3d5623b9348ea7c4f6b3bd57d6b204d53f663d6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page