Skip to main content

training Pytorch models with onnxruntime

Project description

Accelerate PyTorch models with ONNX Runtime

ONNX Runtime for PyTorch accelerates PyTorch model training using ONNX Runtime.

It is available via the torch-ort python package.

This repository contains the source code for the package as well as instructions for running the package and samples demonstrating how to do so.

Pre-requisites

You need a machine with at least one NVIDIA or AMD GPU to run ONNX Runtime for PyTorch.

You can install and run torch-ort in your local environment, or with Docker.

Run in a Python environment

Default dependencies

By default, torch-ort depends on PyTorch 1.8.1, ONNX Runtime 1.8 and CUDA 10.2.

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch-ort
  4. Run post-installation script for ORTModule

    • python -m torch_ort.configure

Explicitly install for NVIDIA CUDA 10.2

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_cu102.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu102.html to use nightly build)
    • pip install torch-ort

Explicitly install for NVIDIA CUDA 11.1

  1. Install CUDA 11.1

  2. Install CuDNN 8.0

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_cu111.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu111.html to use nightly build)
    • pip install torch-ort
    • python -m torch_ort.configure

Explicitly install for AMD ROCm 4.2

  1. Install ROCm 4.2 base package (instructions)

  2. Install ROCm 4.2 libraries (instructions)

  3. Install ROCm 4.2 RCCL (instructions)

  4. Install torch-ort and dependencies

    • pip install ninja
    • pip install --pre torch -f https://download.pytorch.org/whl/nightly/rocm4.2/torch_nightly.html
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_rocm42.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_rocm42.html to use nightly build)
    • pip install torch-ort
    • python -m torch_ort.configure

Use torch-ort from nightly build

to use torch-ort from nightly build, replace

  • pip install torch-ort

with

  • pip install -U --pre torch-ort -f https://onnxruntimepackages.z14.web.core.windows.net/torch_ort_nightly.html

Run using Docker

On NVIDIA CUDA 11.1

The docker directory contains dockerfiles for the NVIDIA CUDA 11.1 configuration.

  1. Build the docker image

    docker build -f Dockerfile.ort-cu111-cudnn8-devel-ubuntu18.04 -t ort.cu111 .

  2. Run the docker container using the image you have just built

    docker run -it --gpus all --name my-experiments ort.cu111:latest /bin/bash

On AMD Rocm 4.2

The docker directory contains dockerfiles for the NVIDIA CUDA 11.1 configuration.

  1. Build the docker image

    docker build -f Dockerfile.ort-rocm4.2-pytorch1.8.1-ubuntu18.04 -t ort.rocm42 .

  2. Run the docker container using the image you have just built

    docker run -it --rm \
      --privileged \
      --device=/dev/kfd \
      --device=/dev/dri \
      --group-add video \
      --cap-add=SYS_PTRACE \
      --security-opt seccomp=unconfined \
      --name my-experiments \
      ort.rocm42:latest /bin/bash
    

Test your installation

  1. Clone this repo
  • git clone git@github.com:pytorch/ort.git
  1. Install extra dependencies
  • pip install wget pandas sklearn transformers
  1. Run the training script
  • python ./ort/tests/bert_for_sequence_classification.py

Add ONNX Runtime for PyTorch to your PyTorch training script

from torch_ort import ORTModule
model = ORTModule(model)

# PyTorch training script follows

License

This project has an MIT license, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

torch_ort-1.8.1-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file torch_ort-1.8.1-py3-none-any.whl.

File metadata

  • Download URL: torch_ort-1.8.1-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.1 CPython/3.6.9

File hashes

Hashes for torch_ort-1.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 26c895932a864423501487f917ed5f3b33a6a8e46c3b9a8daf9203980f257ebf
MD5 2adfcd5f15e56e4c6d0d01c1dc0c6573
BLAKE2b-256 6c00072cf878d8fc82ec79edc86ce8f506bfca69c12e42ba1b7b92f4c0b9517f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page