Skip to main content

A simple package to time CPU/GPU/Multi-GPU ops

Project description

💻  Code   •   Docs  📑

Python Documentation Status PyPI version


Torch Simple Timing

A simple yet versatile package to time CPU/GPU/Multi-GPU ops.

  1. "I want to time operations once"
    1. That's what a Clock is for
  2. "I want to time the same operations multiple times"
    1. That's what a Timer is for

In simple terms:

  • A Clock is an object (and context-manager) that will compute the ellapsed time between its start() (or __enter__) and stop() (or __exit__)
  • A Timer will internally manage clocks so that you can focus on readability and not data structures

Installation

pip install torch_simple_timing

How to use

A Clock

from torch_simple_parsing import Clock
import torch

t = torch.rand(2000, 2000)
gpu = torch.cuda.is_available()

with Clock(gpu=gpu) as context_clock:
    torch.inverse(t @ t.T)

clock = Clock(gpu=gpu).start()
torch.inverse(t @ t.T)
clock.stop()

print(context_clock.duration) # 0.29688501358032227
print(clock.duration)         # 0.292896032333374

More examples, including bout how to easily share data structures using a store can be found in the documentation.

A Timer

from torch_simple_timing import Timer
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

X = torch.rand(5000, 5000, device=device)
Y = torch.rand(5000, 100, device=device)
model = torch.nn.Linear(5000, 100).to(device)
optimizer = torch.optim.Adam(model.parameters())

gpu = device.type == "cuda"
timer = Timer(gpu=gpu)

for epoch in range(10):
    timer.clock("epoch").start()
    for b in range(50):
        x = X[b*100: (b+1)*100]
        y = Y[b*100: (b+1)*100]
        optimizer.zero_grad()
        with timer.clock("forward", ignore=epoch>0):
            p = model(x)
        loss = torch.nn.functional.cross_entropy(p, y)
        with timer.clock("backward", ignore=epoch>0):
            loss.backward()
        optimizer.step()
    timer.clock("epoch").stop()

stats = timer.stats()
# use stats for display and/or logging
# wandb.summary.update(stats)
print(timer.display(stats=stats, precision=5))
epoch    : 0.25064 ± 0.02728 (n=10)
forward  : 0.00226 ± 0.00526 (n=50)
backward : 0.00209 ± 0.00387 (n=50)

A decorator

You can also use a decorator to time functions without much overhead in your code:

from torch_simple_timing import timeit, get_global_timer, reset_global_timer
import torch

# Use the function name as the timer name
@timeit(gpu=True)
def train():
    x = torch.rand(1000, 1000, device="cuda" if torch.cuda.is_available() else "cpu")
    return torch.inverse(x @ x)

# Use a custom name
@timeit("test")
def test_cpu():
    return torch.inverse(torch.rand(1000, 1000) @ torch.rand(1000, 1000))

if __name__ == "__main__":
    for _ in range((epochs := 10)):
        train()

    test_cpu()

    timer = get_global_timer()
    print(timer.display())

    reset_global_timer()

Prints:

train : 0.045 ± 0.007 (n=10)
test  : 0.046         (n= 1)

By default the @timeit decodrator takes at least a name, will use gpu=False and use the global timer (torch_simple_timing.TIMER). You can pass your own timer with @timeit(name, timer=timer).

See in the docs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_simple_timing-0.1.4.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

torch_simple_timing-0.1.4-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file torch_simple_timing-0.1.4.tar.gz.

File metadata

  • Download URL: torch_simple_timing-0.1.4.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.9.2 Darwin/22.4.0

File hashes

Hashes for torch_simple_timing-0.1.4.tar.gz
Algorithm Hash digest
SHA256 e66f1602b6c45c2d237be0e846f6f22d3d80c923011794443ef0e663a10a3f1b
MD5 428d4c4ad0ea556975d2ceacfdcc5556
BLAKE2b-256 0a9cecf5670636af340b438ff9b230a83be60b529640d40b4fc21a2a29103fae

See more details on using hashes here.

File details

Details for the file torch_simple_timing-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_simple_timing-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f9994256367d5539121b4e7f9372a8b0abd29a37af93c2827d644dcc5e032f40
MD5 49b69b5f3dca7c3af4ece73dff822536
BLAKE2b-256 1c273d70f45979089aefe0903f8bfef30f91eb1198221c317de6333720ce9861

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page