Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.1.1-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.1.1-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.1.1-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.1.1-cp311-cp311-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.1.1-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.1.1-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.1.1-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.1.1-cp310-cp310-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.1.1-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.1.1-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.1.1-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.1.1-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.1.1-cp39-cp39-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.1.1-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.1.1-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.1.1-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.1.1-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.1.1-cp38-cp38-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.1.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 23ad92115932f86d6863b0a85297175d7f973d6fc93faac26907c8853d888353
MD5 32c57298d0ee633b139a1e22dfde0bf2
BLAKE2b-256 3ec4bfaa620bba2e53e7707295bcc07b65871a52efe84510340ad79ce6a69be0

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97fb412bb0451f5c616c11a33d5d25b318e83f37e35ee5e131892c3a8ae4c9fe
MD5 6d5060ac2606c079774d7913615a64a7
BLAKE2b-256 daa37f96b36d9a923ad0b04a23864089140a79cff2a4497a454e3b9b742821a7

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c64f72122b6225a5c6dbd957360933b7ddf65327d755ee182221ced01ca38c4d
MD5 3849712ff50a275ead788bf02fafd681
BLAKE2b-256 c9eae6d473fbc9ba5cdad16b9afcc64f767c049c73a6dc4064d60a3b26706d1d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fad1c60cfbdea31bbb2a00e4d1f153604606dcdd34bc974f43c62fa6e269627b
MD5 370b10e897918a80c44b00d1e2d788a9
BLAKE2b-256 b27b4f2e84cce269041c7eae89c6ab0fc3d3ace2047db115b0a086a881e4fac6

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ee3f7f07db023a9ae3606a630db47227e77f20e604c99406767cec58a139b96e
MD5 4def4695d6f0d3a0b3c76778bcdc3736
BLAKE2b-256 51267bd8806a36ecb686e17c261c1785965164dff9c954a5c932cd0643da9c77

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fd8330fe79ca6c0a5b9f8ef874562b52510858e0392c6e9961b050870d6aeb1a
MD5 cc85d8e173771069734c0be6ca9214a9
BLAKE2b-256 a5c9b0eb067243b3aa62910b25ddc26c9104cb66de2b69316088f24ff19e2aa6

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b4a96c9ed5501d4d0c809372c35092c68190e9459006d66cc64b08491d840fe
MD5 79dccbf0c7baf033c35c7696723df2af
BLAKE2b-256 1843ebd17a4d627ab87beb1b1d86e63f92200699cbace491942a2717bed3dffe

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e73ee8e52304abff5e7ecdb9560e70b65f471ee5a528d2279af491ece875dd69
MD5 cb55a5f964993bca518f981ad6dc5776
BLAKE2b-256 2a5818754a3e193ba5fb6097830d51b788574c43ed30f9adf8106cdfd5315ad1

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7cd465be06fd38736ada7d4c086f0cdd249de28b7575d1035ce25dfb3896fa4c
MD5 d044114b8561f58464b423a404391d56
BLAKE2b-256 17d98dc2b112cd9e59ad6441dde81098a29e172fe4b877d5a12081cbf11ac4bc

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 24fa5870f620994e4588452d54edcb2ffb5f509d7ee36ba04e8c68eb28affc8a
MD5 6c4cb33e2e4dd2f1bd9b8ff36c70b21c
BLAKE2b-256 f209e153cb3e80becf8821e7e16bf407e7f4e55783b07314d6fad9ffb5d0b295

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 de255d4db1040d8fcfb310b4308b5c616bda7fe3535222e9619c6260d89c9704
MD5 cfaf58c7e0a90960fe0e14b24b9d5e1c
BLAKE2b-256 2ad22aa7bb10f98f95fb728c44a45b6e6d8f27bbe22083f05e7094013f3f8ffb

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02e61c5adeda0986235cea1bf497e7e15a0805c64f32e7542c084606feeb0109
MD5 052e6a3c7fde870432420e1b28d65736
BLAKE2b-256 636e90fa82c6e9ba5b1d19c4114930bdb78370349e1455a4fdc639d50dd1019c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eb00e5fd88088b0efd31163cd7f12e6666086c7adbcdaa70a791662c4f56ed09
MD5 e6098743c0f449894c12d83263bb8766
BLAKE2b-256 9c290a713e35ef717c195a08a5b279a0cc31f75cea8565c2ebb901d2723e34e5

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5709943fb2675c8543beb61f033fb9d001abf155f1509af33e13bcb83f543d0a
MD5 e2b45c446c644e71e3d655562250b9a1
BLAKE2b-256 db152fd0356adbfc57431d77b964db28a8b6e17a0ed4c284d2abee1668c0de7b

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7ff0589dd73dbdea66ed21c817cb6d1ef8ecd3ee84997aea7fc0e352ba168e48
MD5 6cebca8cca1f9237f4651b5b413c9d5b
BLAKE2b-256 b95b84bca96ce37aebf1aee275bf88ce30e8f6252c1bd0335451d90d3facfbc9

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57084dfc0dd76220f8b070ec1278ac0504f47b7f7a66ed85f4dfdf95164c3234
MD5 f62b44432b65c6ab3db4d9779aa21ea7
BLAKE2b-256 e98340eec0147c145673e1fdb508d61bebc08fa1924fa845e4a2f847ca6843aa

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0dd6243bd22f76032a48c3a19e89f32898897c1799e43c0da86cf90d0883798
MD5 2906694c24836e610ef9da29b625e554
BLAKE2b-256 10dee848f0a0a9a930361acc420ba64779ebbdf22e77e6c0577fbe3f81bf841c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 431294b5445d087a39f6587060f1291e9131b7cbc04e19ca84c7201d28ac7027
MD5 a7b994e0f1a62fbf35f0e95eb67e7484
BLAKE2b-256 44f60f0dfeaf53d28f9ecfe12ec08254c12b59ea114861b76035a589e9d2011c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fe4a0bc6ba8a04f71acbc664fddc2b73637cbf1be345c643342a9aed343543a
MD5 2d690ac32d8346606626a4a059b89bf1
BLAKE2b-256 b77699d17fc4fac4e97388a6c15aab0e3d1b7b5359f53142fd5e8c5732762798

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6fc77c48d079cd26ef40c613aa6f31c5c78f0f816211662a27856c7f544f1ccc
MD5 3b887560efca8cf4dcf8f573874d866d
BLAKE2b-256 71f4fcfc4962976b2cf3358d06688f69af48e4d65d5c1fcb9dceb42c702bf813

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page