Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.1.2-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.1.2-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.1.2-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.1.2-cp311-cp311-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.1.2-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.1.2-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.1.2-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.1.2-cp310-cp310-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.1.2-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.1.2-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.1.2-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.1.2-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.1.2-cp39-cp39-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.1.2-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.1.2-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.1.2-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.1.2-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.1.2-cp38-cp38-macosx_10_13_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.1.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 47f322708c282e0b1b7548cdbe4e12451c531061761885d7c7fe2e479a4a3861
MD5 bdc36cf663a0ee97d3d61e0ee5c98943
BLAKE2b-256 c9c0b738db223b85c0096e2c3b1aaa647419f9af68331f8ad09dba6a2d38136c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a6bade8a2495a724f4ee6acb5e86828ff4083dc6c7c57c6386b54a0ea7afe71
MD5 02cd090d36593b73084a2b915ec5b310
BLAKE2b-256 8224bcf6bed8b5933e60837028e691e454b8dd4af9e2f24e1b62812e1631448d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 50c651d60bde7a4e096bf376eddb9ea32da6e37c3827536d6e918798ad203dbf
MD5 d1495c7b2aef10ed17ef75299803bffb
BLAKE2b-256 1c683495830433ab3c4bd95b94a20d83d0b8a01f28db227101f4741fc1babdac

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 860acc32e6507063f2c13d81e26718199e215f34a2bcd6c9609a25e9bf21aa36
MD5 6969f68161df5f9a69159f9583095fe0
BLAKE2b-256 42e6cd2386ff0bb1476c472593a77ca1870cbbddef901e63b04cc84ccd368da7

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c1084eedf4ced1af9fdd18910690ff615f89baeb30b32030806543fbc6f3657e
MD5 2c0f8df17bce16c68550c415679031be
BLAKE2b-256 a9956e46b63ce567eab0104e2692e513cddd400bb5507314db369ceef2cff49b

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 683eaa721e016ca1f27bb28fa89feae37a6f7b98ff1ceee0d5e5aedd19bd982c
MD5 45c4abe7c041d8c8d3562b9c51f68589
BLAKE2b-256 ee40f712c40f30580fc7d57cb842617002707f35c99580306c79af0867591847

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f82657fc4ec3b473bf6c752c0ee62d7f511af9ef37e5143f8339ec049504d767
MD5 9cdf827da057672e71e01718e8a6b897
BLAKE2b-256 8f7457dc1de9e412ba80a2eadeca39a2fd6211786d6e6272732cb5e2dd320f27

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23c1b34e98664a0ac239efd4e1a0af407b3dd0a86a5869114bae582c3e5437d7
MD5 5b81c95d1852fec680ff9e573e06bc1f
BLAKE2b-256 25834170df23c16c25818ce9591fd2b8109cda3f725d115d77417d4efef4eb46

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d676673c1ce4dd11fca145e3a6cd9b4e5b897cffad0f617d2906f2d3fc8c3a9
MD5 02c0bc86329c52b882d1b13e9ca92dee
BLAKE2b-256 a86c6780526584964ed2ff84812a5a5fbf58f748cc947d5f21a800b69e950fc8

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 06f8c02814e6cdd78626bbf44ad2bb8afa5b39ab650c6af18328a32311461058
MD5 94825e398d1c8b0e3c50707eff66f796
BLAKE2b-256 0f4483ad2df8261b7d16fdf7e56c006ebc9d72a1115581d4195c9c480f7f6cb6

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 03d2a3c9a806486f2d9646381a564a922a880b6df8f18336b6f0e4a0d8356743
MD5 4f6799b165a5897daf650979e0b09e7a
BLAKE2b-256 8610dff137b699aa2268bae3e73abe236d3e138f54369295ab9789ee4e863299

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3bbb5324e705ded77616e546591b249ae7588d35a3e8c2c4c1d986a5ea51ef4
MD5 38cfc3f31cced16e3175f113d8e1404e
BLAKE2b-256 26b677d941eeced23d5d14f1e02dde8f4157b11e52411dbda60723f92f568d7c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03b4cf02ee468b25280f9593cca95a32b517a88512a1e5f41129e24cd0c17e64
MD5 b2b4d8a7c187e3ab014dbb8416c921ee
BLAKE2b-256 40894adf1c38b0e8a4bc4af229d4ebe789d9addab4c6d98eae5b1e61661e0c21

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14729cc9df52defa674fcf5ed4de0d6507038ef18012b96a2f56a77ed70676dd
MD5 3692c50ebdbcd300a27786b6e123cc61
BLAKE2b-256 2c826e2b8aed9d906c015592a302bec2969c397a8a76167ddd3c9edc8e17f50a

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ae50dcf34d5c6f73180cf694195ee31194b9d6090328575c30a5960bc716fa52
MD5 dc1ab83abed2b20087a5a6fbbfad0712
BLAKE2b-256 6d40a9e24e9c6a0b6f291bccba86092c752894c5daa19439fddcc7d7e74adeb8

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dbaefae9ca0b208ce0157e0358cea8ab796c9e26a2c61c3d181246e4010b04d2
MD5 c09b8fb3846d5323b373f6905d8b2ce7
BLAKE2b-256 2a3696895107b44f41cda87bf41d344cc7b7a1a4be8fff9bda1c66da5ab30051

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff7156b30eb05e9124286c30c80da84b93e227d009adb96eb19489600b459332
MD5 d6b0f2674627219c4d0b32b3c06e2513
BLAKE2b-256 348b01d7cf6b5988332b23ab98a98628a8176897e9b308971bdf2a41ca19fcf2

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c33e05c2305bc4d659aaf77a385433e3f8ac07ae235d3b15d6ef4ff995258746
MD5 480e976a50f5b7e4efe46602f102402e
BLAKE2b-256 361684b193aced839047e297cce599fe8d35c3c8f2be70d96fe662c59bb6bcdd

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30ad97112412592518953f3cc2cd1b6ae153d6563dd5bd9eab6a972315fe9d9e
MD5 de0b4fb8ac19cd215098e1245945f1ed
BLAKE2b-256 baa17e0dfa8fcec4bac84fff5291f5a400dee11f748cd701b6f9e45a4459bdd4

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.1.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d0efd008c35dec962b80f5dce3468bd1b88301cf65152bbfa7f74c0005a17e89
MD5 1c1bdd4ebbf2be461ea81f7c7523df40
BLAKE2b-256 2dcc51d7f718ba1953dad08f432dc89f8e71a0f18b2129cbc8da955c5a353073

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page