Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.2.0-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.2.0-cp312-cp312-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12

torchaudio-2.2.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

torchaudio-2.2.0-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.2.0-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.2.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.2.0-cp311-cp311-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.2.0-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.2.0-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.2.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.2.0-cp310-cp310-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.2.0-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.2.0-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.0-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.2.0-cp39-cp39-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.2.0-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.2.0-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.0-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.0-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.2.0-cp38-cp38-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 eb4b03f69d1e399f0ed082b37eeaf189754102512772eded257be908f71d948e
MD5 69478a2f55cbc69fbe978962f5f4647e
BLAKE2b-256 65d0355175f1f2abd6f193c80a312da01bceb633c98d02b731381c71aa2c58ac

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8dbb5f76327a3f2e31dcd3bf93b6716f6ba0342aeb182bb2782daf67b3a5aea
MD5 27196353bd1b5beb7a3df161b2abda4f
BLAKE2b-256 e304eb71086ca35dbb0db6133fcf2ee5ddde8ee8e046b6f5e2970672cfcdc02d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0e874a34c0bee0e9374907512a7e89688ab7ed179b2f7f30b878fb991a852237
MD5 b9f46696c0fb281cd28b1b0318b8ebb0
BLAKE2b-256 14ef83df7a386f05ad2a13d76a34a001e97b607ecfbc8306b3b0b11c4e5d547d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a26447ec3d8be03a0b9f429a9de09c7ad4119de08c78491e4cc6569bed1cfdd6
MD5 877eba7d223fe3cfee6c73c4688a8b28
BLAKE2b-256 498944b043bc28c346dd70217ca768cacbb17dbf5db6f8e7e424978fb05e8930

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9fd98ae6f7fa191d9e3399b6653962e416f63ac172b97b0c24d63fd46243f94e
MD5 97995f205f02efbde7d82d6f7238e833
BLAKE2b-256 9f7a19a09df71ad12549dcf91749ffc521edf32a09e532c9277d3289b71949a4

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 acc9c1e371cc007b32db3c4db2c24b44793eb9102156642d5b0811813049adb9
MD5 f7ca0accf8ea48423a4747fe287c7b25
BLAKE2b-256 071fddc210fc946855233d9be29d6509fb0c06803416b500a6ae7414f2371edb

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9be18ca20a0c2e8ca0b633887114083c928c95e454870b1d6ea8cfe05982cec9
MD5 3474d2b9660753a75fc0cbaaf36b6d93
BLAKE2b-256 c5b0ee24c3ebb6dd448993042d55fc7b31f7f54dd5f2c7541b3f21f13b3165d7

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 622098474488bd6d3be3ad0d3b3357bc67544a212a5e6eaff1738c234264e1f4
MD5 ad585cb12e1580a824373b3d56064560
BLAKE2b-256 37983136b10673b2b44ed755cc5261921db9a96af72fda6c3c852696a705d5c4

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6a84522a48d4605e42f68e5729c0b0ea3c5a604c97aa34f10b8147ed010eee07
MD5 84034e536202d53a47d4b56ba955e0bc
BLAKE2b-256 79f75929802a1d14693d2dea6e60c51a923724348f134a91558f22bc686d3d8b

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 971ede9e8488a8b85d6724a0586c3828648703d805054f5d1275d32060c17949
MD5 f5561d99c710c29b2b3282cc840aff04
BLAKE2b-256 713bc03e09d76f8be206abe382b67a93d534bdbaf1e94972fdd8e40e41ec9955

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3636fb7d8a7a964b5b49cc9372d231bbdcf985b65a5f8780f68979c75e2dcca1
MD5 929485e6af14a86dbe76762b2304aff2
BLAKE2b-256 c4ae26a0efbdda4a240237f75bbaee5056aa66097ae3d56bc158c92ebbd8af63

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4ea094b8721a361982db062ee993f2a6f71dfe16f62a84f8900b2364f33a2e4
MD5 7ae8986042df74c3404d29d9d033914d
BLAKE2b-256 45a574d8a03fdf47cf89e9a2f6c58a65ffe4b392e8cfa503f148baec43377f24

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2dc32b76eab278707cef43dbbadaad324a98b0f77f088cc4bbe5c2b08a56af1
MD5 6961ac3bbb329587862fd732c8b931f3
BLAKE2b-256 30fccdcf7c2071539ea147ddb6de2b538d9c1599665b621f2e6cf0b3ef51d20d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc48f966cc1973a8d58a9686335e517ac00ddae9cd7b592916a04b77499ef2bb
MD5 5f75f6a337b7ae6ce8be17110318adeb
BLAKE2b-256 df97a76b5818c7fcc1e8ee2858db96ce5908798159354d57b9b38287d1c2bcdb

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 59e56836cd2be81940cebacd3f4ee3779c4b78378a3e61945446da77c16384b4
MD5 6490f23d20ce923f5130e28dfaf5759d
BLAKE2b-256 138fe026d46178b918b888660dbbdbbe6d406c63a8e61be799ab2f39226fe717

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 494addc560824102e7f292beda181b7ccb89b14bd689bb1d21a699a51ce607d9
MD5 7c25cf9da567d4bd426fffd0f455be55
BLAKE2b-256 2f5c764dae1d959a622470b529bd2dfca2b9d80b1a3d043e1c245736d3c39539

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 840eb865b0647ef1c177f7efee14add24daf5062a7b4e49947fb98d4ab990663
MD5 bd4d8e83d507d6873c6810eab90af74f
BLAKE2b-256 6264ec80196321dc31cc2da8e4645c29c933cf297988b6a66491843757d7cb01

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1a76b4a4e5faf969de8be3c7d323edcf574f214da49ce98c21304b436e01ffb6
MD5 55b8b6b105a15ac7852046fced90628b
BLAKE2b-256 2760da5d351eaf0aecd418625d5b1a66321288150b4818b7a00aac3627b14d8e

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb1046eba9a3b7f6762f6a37e44330dc6c9625501da4bebbeaf896cea406f2d7
MD5 d3fc6356953ed88ddb71012cc5926ee0
BLAKE2b-256 c52c89ed36819342847d59f3343dcb00396841b73df39ca184d27a77f78aef01

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 31d0c65b2fa37c00b0c582fc2acb69a72b7ff70b81a1754d9007d562ff143880
MD5 d38d206e0b2c69cb1c6517ac2f93e588
BLAKE2b-256 32655fbccf77d837a681e6418d6ed6ecdaf79347d071d9d0e7d9132314857f45

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 43d65cb127faecdc513b16cc91040a8249d26d025e032e7d53278a770bb2c493
MD5 48e2cc984f4ef1ccd24553fc91c4117c
BLAKE2b-256 0f5bf03706c0196febdfc8a897153994960bc70a1c1b50b336edeaa1c656ccb0

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 196593bf43e503f10ff8c1c60afa974b5f50b5ceb229d7405cceca7b5d560216
MD5 41f5c43bf4d36e4203a7f3d5bfe5a4b4
BLAKE2b-256 7457957d5caeff0feebf5aaaa6a0015012b1e29ee9662aecc5b852c1673c3b63

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 29006c87112861c851974a529f487aaee9d3674d4e5f8a392744eb7c3a023576
MD5 2cdd4e794eaf923fde3407b4bf17cffb
BLAKE2b-256 9b47ae5c2ff4189c0eba3ad92d842325c7ce89da9d7c4a8ca1203c1e105fd56f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d03829a187ec893b3253d1182af0b5be09a93ad5f94e1e8debf6269e1c7dcd6
MD5 3647b791a38e7b05699ec7589de1f52c
BLAKE2b-256 8fc8a3803570e906aec5e3a9179d4af0b007b76189eba6fc191a5af1a60c2c45

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c5cb0b4896b107f4d1e7347ce2963c9bb77d248e8a9db5886164eca1b3ba620a
MD5 eb78861a92f362ab870165ea4d8ff50f
BLAKE2b-256 63bb8b0ff50d2beed333c7caaac49e0e69e1fd96513e0f97a6472517b9da568b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page