Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.2.1-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.2.1-cp312-cp312-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12

torchaudio-2.2.1-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

torchaudio-2.2.1-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.2.1-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.2.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.2.1-cp311-cp311-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.2.1-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.2.1-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.2.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.2.1-cp310-cp310-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.2.1-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.2.1-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.1-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.2.1-cp39-cp39-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.2.1-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.2.1-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.1-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.1-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.2.1-cp38-cp38-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.2.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d5af725a327b79f3bd8389c53ec51554ee003c18434fc47e68da49b09900132e
MD5 2016c284e8803952ee839dbe3debdfd8
BLAKE2b-256 77f76ddef43a933637ad0d80432420c6928882ca8bf19361e20bf8f7417228ba

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd389f33b7dbfc44e5f4070fc6db00cc560992bea8378a952889acfd772b7022
MD5 e57e363d1d4b08a7c7f775fb77d6fd78
BLAKE2b-256 6548c89f39d03a483379a5f3a688b49ee6a6df5464eed63660e6b3a42e46b188

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2483c0620a68a136359ae90c893608ad5cd73091fb0351b94d33af126a0e3d67
MD5 ad761a5382098050471f186a4ad385a8
BLAKE2b-256 1045e3cc00b7ac4e3baad7f9fdbde4a667168afa6ced3a5d50b01c4c77025385

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2419387cf04d33047369337bf09c00c2a7673a8f52f80258454c7eca7d205d23
MD5 d5889a7c561f2cf4437e4ea92ff50bc1
BLAKE2b-256 e524d308b02dce1c4513cf66b82b35489b2470eef86db281d9743302f501d450

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2c232dc8bee97d303b90833ba934d8905eb7326456236efcd9fa71ccb92fd363
MD5 f3bbdfb0746d7905b1f22c366cd40ab4
BLAKE2b-256 b55b105c9d2ff5257262d97c3b35d4740d242b673557d577959e9aae025a9cab

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 63dd0e840bcf2e4aceb7a98daccfaf7a2a5b3a927647b98bbef449b0b190f2cc
MD5 e9fd6a58037ec4d501d9d57eab6ce63d
BLAKE2b-256 8c49e37b6cacaef3fefdab3c508ef04f6cbdbfcf5c014a5ba28cb62ab33badd6

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20b2965db4f843021636f53d3fab1075c3f8959c450c647629124d24c7e6cbb0
MD5 33f8c77d48b2a1a18e63d5fcc47e53af
BLAKE2b-256 c6d04b72ef5957a14d6d6042139486f229c80d5fea94150aa44e3de962da073f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7df7d5d9100116be38ff7b27b628820dca4a9e3fe79394605141d339e3b3e46d
MD5 64cc4cedcd3c44b5c3b840b7a63d1218
BLAKE2b-256 a657ccebdda4db80e384166c70d8645fa998637051b3b19aca1fd8de80602afb

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e62c27b17672cc2bdd9663681e533000f9c0984e6a0f3d455f7051bc005bb02
MD5 5e906480b23b6984193449c48ea09c98
BLAKE2b-256 8d23285f4566c0ab1c0499f88bbfa69d896a3546ed757f177b829a9fd4fac28f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 274cb8474bc1e56b768ef347d3188661c5a9d5e68e2df56fc0aff11cc73c916a
MD5 d9654c5af31f4272c2de30c4fab90314
BLAKE2b-256 47dfca86132b447ab9c7abaddac0b5068a500033431d2c16b347e77e86863c4f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 281cd4bdb9e65c0618a028b809df9e06f9bd9592aeef8f2b37b4d8a788ce5f2b
MD5 743196e0e05c61a682475295068c358e
BLAKE2b-256 c1b34f1682fcebd9159da2d729374a5c87c309500dab747fce8d004d419c4a5d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b916b7764698ba9319aa3b25519139892de8665d84438969bac5e1d8578c6a11
MD5 37983930eec01ba2bf2478b891b8a752
BLAKE2b-256 6a6f2f7f833cb29bacec5e3bad29f5de3b3b6effc293e27f98571b3d591a7738

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 55d23986254f7af689695f3fc214c4aa3e73dc931289ecdba7262d73fea7af7a
MD5 3dd6a982857966bf760919a7ea265f97
BLAKE2b-256 ce997485966a902905e206eda57fdca8de69545c107e33eefe9f6536c2dda16c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ad55c2069b27bbe18e14783a202e3f3f8082fe9e59281436ba797edb0fc94d5
MD5 a8f1f0fdaddd6a9510922dd9ef6f63a1
BLAKE2b-256 a6ad1dd62a6abb4a6641a365cf42a663820755465a8166147db986f5970cc2b0

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 580eefd764a01a64d5b6aa260c0c47974be6a6964892d54029a73b17f4611fcd
MD5 88b31233c6b00fa0f22361f3ba475077
BLAKE2b-256 d5123b092b0b000540d910df528789fd5368e8c915483c8837f43fed9aa6c879

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 54996977ab1c875729e8dedc4695609ca58f876c23756c79979c6b50136b3385
MD5 a709507f55207b290c5738aa711ed99e
BLAKE2b-256 d729a8fd25abacf9db576c2f37cde2be7dc49f94c83ae99b5ed8422cf814ffd5

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb2da08abb7b68dc7b0105748b1a736dd33329f841374013ec02c54e04bedf29
MD5 9a5a0c393322407d63b267902031daab
BLAKE2b-256 d7f687ff08650ac71655e7e307988e5b18158efe7425bb2efe51d16679756fbd

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3962fea5d2511c9ab2b1dd515b45ec44d0c28e51f3b05c0b9fa7bbcc3c213bc1
MD5 c4b2c45acd5398ef09156d6790c6099e
BLAKE2b-256 80f7fed5492190c1a8222d59934def1e0b8edb7125c88edd77af3b8ca682409b

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68b1d9f8ffe9b26ef04e80d82ae2dc2f74b1a1eb64c3e8ad21b525802b3bc7ac
MD5 555570a9e7d211bb22b1fcf42c0f9888
BLAKE2b-256 cb85028dab9e9144a966696d29a52dad509437288e2c4b1af4775d8ee0365003

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0339fe78ed9c29f704296761b28bb055b5350625ff503ad781704397934e6b58
MD5 5f9343d583b90e86910a5d3bef4aa7b3
BLAKE2b-256 6d77fa2ecf4adab64efb219081da63f6e5689f68cadc10fe574dae1a632e2110

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4bc43d11d9e086f0dfb29f6ea99517d8ec06fa80d97283f2c8b83c4cd467dd1a
MD5 d1aaf2ca281de27e3e3e30c4cca3ef79
BLAKE2b-256 5481f943882d19ac58bbec4ad6f5a54be5484d8324a73eb3ef36cc6138a79e64

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4462b3f214f60b6b8f78e12a4cf1291c9bc353deed709ac3dfdedbed513a7a3
MD5 25b6c09acc0535939109454161d9a504
BLAKE2b-256 ba75f94ea135d5787fc6058338aae3cfb6db4cdcd7767409b1435a3a28f6b65f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bee5478ec2cb7d0eaa97023d817aa4914010e1ab0c266f64ef1b0db893aceb49
MD5 014230b9c11eb32c47294d5c46043028
BLAKE2b-256 e2193feaf3854914ab1bf7d84a2050e634df761dc4f3d4e8d67e27b04c833642

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f487a7d3177ae6af016750850ee93788e880218a1a310bc6c76901e212f91cd3
MD5 73cb122a45a0261987bcfb0abc33c7cf
BLAKE2b-256 7e2ddaf9b8e0df7b46b3802909a1003e121ac8179c5942b80dbde1df345de56c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.2.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 81ef88d7693e3b99007d1ee742fd81b9a92399ecbf88eb7ed69949443005ffba
MD5 d0165cf334b8a14edb003b7318ad224e
BLAKE2b-256 c572911f3e64989d99eb6078f4b9e009461397cf2f5a27735eb5dd2cfe4a3ed6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page