Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.4.0-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.4.0-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.4.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.4.0-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.4.0-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.4.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.4.0-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.4.0-cp310-cp310-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10

torchaudio-2.4.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.4.0-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.4.0-cp39-cp39-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9

torchaudio-2.4.0-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.4.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.4.0-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.4.0-cp38-cp38-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8

torchaudio-2.4.0-cp38-cp38-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8

torchaudio-2.4.0-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 473c149c1c5288f4ce7b609c5ecb7b2528e7958ea701147a20413d65e5a8a59c
MD5 196b6eb7fb95651932fa5e75e830d231
BLAKE2b-256 33566d6db4673ede22d814cf0f5cb6920b997d605fdff21a28b7ffa3b555c330

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 534d1907bb252ecd2ba9e1d61cff7220fd66090e63df7b3c109cea77a19d4cb8
MD5 a2dd73d8cbdf21fb542d986c8ac2a645
BLAKE2b-256 6ea706ee10dfeb5e8ac2fdef29a754ed100039f5d899dd21ccec4cfad614afec

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4782a49171d94431bb815a55aa72733f5fe38034bdf6adeced28c226e2cc791b
MD5 5eee11aa218be365ecd0f7d4b8b99d40
BLAKE2b-256 c8e7ff8dfb30f44288c01baf39603827955c7c95ddfbee732fb65acf32f571e1

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae13a95ef6fabcadb0eff36d85f5048d70474a2e9704fa9c86e9903cbcec0d4a
MD5 d0cd5b5587c3e5a261e712e3bbd02e2a
BLAKE2b-256 cf1e2139b508cb4716f98b972d8fd76084277d57faa5face86b007c495da52ac

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2993a3288b2b451bf90c7c4d65991b5769e2614d923e295f08a10066ce79d3c0
MD5 952fdea0577ff30c45e1e27a16b68405
BLAKE2b-256 969b720bb13674234a2cc90525502a255233227e7e2a046ab96628e6b0969b07

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be969c09466db35e0d79b8b09dff66caedbb9569b42c903a2d5e0db2af760e3c
MD5 a6b949bc4b78c46beeb1c44c152f7e85
BLAKE2b-256 fcd4c038ac466f98bc615183d6d1e7f31d0306834887748f99d2ca52877cc534

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 393ee8c24110ccc8030482c10cd9d5d0b5e528f6a9dd3d60557e1151aa951b13
MD5 654feb5146b74b706ae8d636bf5561f4
BLAKE2b-256 b7a76b1c6185c9aed923f64fd6c3d1cce09b21031ab36aa661f39e255535511c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acbcf9129ffcfce808254e2cbff103363c505ce06ed4c4231b3f436a10679d4d
MD5 f7dbca76f82d86272743966fd4517043
BLAKE2b-256 1b119c38a2da79d79611fd6950837f5389bac55c6fdfbc1b4ceab6d2afd8b0d4

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af19edc1c3c0ac626f594fc67f087db401016d9216af8d62b6c6ff731efbae43
MD5 17ddc1f26a909e13d8eaa02572814485
BLAKE2b-256 9c5ffe6e84fece5e54d215a4575061bf88ad1af21c4875f0d3297b8926a2cba4

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17cb73d4336771d455cd8dda8b4891307a5346b890a4e6b1d4b73d565258fee1
MD5 11fb6c3117f44a601a99bf0748d115a0
BLAKE2b-256 4879074ec23358af34fe467ac781e817c310649f19c4deb8d08770a3e6397945

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c48bab82a9ee0c67b9323c2ebbe0890a34c5815d1ff1ace77b1c9df4e6fdbbff
MD5 40095dd32fcecd34ef06adddb03dba9a
BLAKE2b-256 2d4a416af600d0d47343b65dd182fb7b918a640e80385b609d94fb89a3fc527c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 733e9d859b88dabefeaf008e3ab2b8c7885b29466068b4b79a42766be4619e46
MD5 092480a98ec7a804800f24b205a0e363
BLAKE2b-256 e05bcc0ab8d15291d4b14a2ce740c7b46483c356f060eb98dc9a68171230cadc

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 608fd609cdd8323ef4a50c1e984a0be7282a6c630fad22e040e957f8e376950e
MD5 00981c080487f182ab024b867f80c714
BLAKE2b-256 3dd296520547deba32e7bf2ac61e39d7eb8254f5e471f6e4ed6b985891baa5bb

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c840894de12a6dd3ea57cbb0d0086123aaa48001ba3ad99ef714fe009eae8eb9
MD5 68f3ddead48620319f84a582d0f7ca6e
BLAKE2b-256 99138428d9007aa88cd150fb80eed8c929eb8ae45e7adb673fe44c1360ebc718

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1eecb83c123577779a45381de3a38e4add132a80104cff4afd816913f51ca17b
MD5 3b09fbc5d0a7e80c44c1c4c5cbc4acbb
BLAKE2b-256 bcb0e8754a5e6977edc030e6ae3350ea60c85e618da025fcc28092831787934d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fd670c808e322c101957a07651e29935f86ec389243c0c43a24edd7a1854841
MD5 45d22e6895ac4839424c3fda03bd681f
BLAKE2b-256 7921bb5392ce546e5d371c4a6d812d464f76066cda79757732c98fd366d104a5

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6a10d3c29097a4d81533ab79e351c93d6d91eb1584671d5eee59ba3c259be796
MD5 beb0f97340793d12c5bb03bf0999956b
BLAKE2b-256 abde3d254e45aac4e5072d6ecd8808406f7fddf80c3fce546cabf01808f65127

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d7fe9e7f2fe8250fde07b20356c44d770d5faa3ca277abdcda3af7d484048fba
MD5 e01c943c585972e00fb80d610e1f6a30
BLAKE2b-256 6fffdfd6e7c4cc5a5c64c5b2a1dbf8e7280bcb3572329489412b65e8c0546776

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2bcd9700f8ec70804cc9c48d4f6f3fa7372f52421eebb64d02c04bf805ad284d
MD5 92f8b2fccc03bc87a0e77c216327f5ef
BLAKE2b-256 d2e74f1f431542d1760a0b0de7503aee0004d781b813951d76583684f225ec24

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc3f8ecd6f0bbfc654d3bc52756a7ca359f1d88b4fa0290e1cdb763a3131b7b9
MD5 8ab6dc5c8b6cbee1b16b28389932a551
BLAKE2b-256 c5266db849939779d02d77623a59a51e006ca3666def1e589ea292c91eeebb5c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page