Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-B��lair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.5.0-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.5.0-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.5.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.5.0-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.5.0-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.5.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.5.0-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.5.0-cp310-cp310-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10

torchaudio-2.5.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.5.0-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.5.0-cp39-cp39-manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.5.0-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.5.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.5.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e98ad102e0e574a397759078bc9809afc05de6e6f8ac0cb26d2245e0d3817adf
MD5 b449c223e29a139ee27a418e1bd9078c
BLAKE2b-256 6329c86f39b9896d2ca03e14be736d7e38b6a77f3c37cf36fba7fff4de15d24e

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1971302bfc321be5ea18ba60dbc3ffdc6ae53cb47bb6427db25d5b69e4e932ec
MD5 8425641d772992fe9ce54373359bc362
BLAKE2b-256 a5be60092f279ac86fe2920464ee7540c8715fc621462e06de38915a8f935e60

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3009ca3e095825911917ab865b2ea48abbf3e66f948c4ffd64916fe6e476bfec
MD5 a0e9fa876e8a9e7c151bf400054a52d8
BLAKE2b-256 6db830849d2fa7ce60acc95df9c04ab42b6c12ba1ca968cb9fa6f64010cdc420

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c835da771701b06fbe8e19ce643d5e587fd385e5f4d8f140551ce04900b1b96b
MD5 5b56a8828f9cfd36e1316c38ad9c4df0
BLAKE2b-256 7126f1ac135bfb26d5073660c6e93e271046a2dd42cc7b79875dc0b6459a3aae

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 168d9d2a8216a5f1888713c13914edf410d2e28d39c6bfd9e1211baf6f2c76d8
MD5 c2fc7b25a986cc03e90aeaadb0b296c1
BLAKE2b-256 092f62c8925ffdcac92ea64f00ccc77e6262f3212a0cc22c21473a9fd98966cd

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee844aa12fa25f521f64ec86c835acf925d194ed4fb66a9b442436f80b39e8da
MD5 4ba57ae1fc31b071978a175fbc86d84a
BLAKE2b-256 320fe0104705503fd5fa738faff6b940aec2440cfd809e45792255e69165631d

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 470dd171a2e44a4c1aa89c5cdd4a0ba9f99650b68228f3a63b20ceaafd553567
MD5 8e8c76657008de42edbd653d95a186ba
BLAKE2b-256 17edd6e73554726a4aea054353093f3dffe68ea18f006d14c0604e651f3e6ee0

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 982ec0494a27c7f3e7e68c91cc92e6e1ad6f86fedeeec627096051309632b149
MD5 1165876e68ccd618d69ec66d73716d2e
BLAKE2b-256 bbe1fd1fa394941d8f1b093a8b8842b9a31a17e313b4a29c3f53b6cbcfb75bb7

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 763bf99b2def4681b1e760883849e0e85fa172eac4a12d1870380d5b7d1149c2
MD5 cbb336d0a7790decc8cbe84be328f47d
BLAKE2b-256 cf9d6852b89ac387d2343aae2b92202d658656bef6691f44c1ae6b9875e48b08

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e2f596b0e8909924cdf46acc579481132f5c0341824957f1cca8385c61db5b5
MD5 4bb25b7e61ff7a4c4459c926e97effd1
BLAKE2b-256 fb5130b26fde90d71d0a07009ad02d05388feccc3b01ebcf9919437e01f26b1b

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 70fe426ecae408e9a7019cfcbcd4e81b6f084920ffffac2520f1d28a23e145fe
MD5 95954f16ffb29b7884c5d6525ed5a8c9
BLAKE2b-256 5d3b6813dd90c940ceb7b0ac8960e6bcb2109007b5dc643b00a2f73036ed2dde

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab69bdfeb4434159e168a4a2c1618d1d65a5a14a91d17d21256ea960f33405fd
MD5 548f3e1d9bbc313452dcb7352acb0b97
BLAKE2b-256 b3a8a485ba8015794aa6a5e042469e0be1d6ca4930c391e78945d25d7a9c8310

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 242b3c9b1abf212b3a1f28eae9814db4daf4507f74b63c7ec7161d35b3c37147
MD5 1c9ac64cc993aa817077055e8f27c631
BLAKE2b-256 528a0aadc983301d26dda7a6d3729e9078259db6089bd0fb603f9893affd8dab

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74a3de13ec0a5024999aec75b3fafa97891d617ce5566818d3094857d1e0229d
MD5 c4567a2f76f4141f189fe3e0a6ef3bec
BLAKE2b-256 fd6cedd1704d75dbbe4553bf8ca94dd1990a7286560781e44a1cbe0fd22a496c

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 877706453e7329844382d06ffee31cb11b602c6991afefb594086ecdd739a5cf
MD5 45935ef4f41e444812f4d1137ea64b21
BLAKE2b-256 ff975b21f79f6d8c62c65f0b4a68b5ca8e33b135c69ebd0a8d0274a565e6a45a

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 85573f66dc09497d282bbf406e8f2b03e5929eb3bdc1f76a9d9bc46644d407b1
MD5 e6e0d3e73600f18ebd4492615614afe4
BLAKE2b-256 9d5670d5e62d1d8f3743bc0c7e67ac601ce03014e2586041c4a871007fc968a3

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 593258f33de1fa16ebe5718c9717daf3695460d48a0188194a5c574a710838cb
MD5 00725532ebf291df39c761dd9de5dfb4
BLAKE2b-256 928182dbbd19b7ed35cf247da5f5c9904979585f11b74165b15f3a3f5573342f

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c35201efd28244152d6edbde92775c10f39f5a5d9346202f07b1554dc78d25a2
MD5 798abcd3d35edd1837b77705ab5363c9
BLAKE2b-256 285060c694225f2b92f9f1ae1285db3207aee90c5271d911fed3a7b9c7665815

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9dfeedcef3e43010f3ec2d804c8f62fe49ab09ef1c19e6736325939661a293bd
MD5 4e20f40896f4fd8775da33bf2a2b3e6c
BLAKE2b-256 c1b47dd6321a957cd2a7faeba52fb3477d9fad70c517dcf198a0395d021a0651

See more details on using hashes here.

Provenance

File details

Details for the file torchaudio-2.5.0-1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.0-1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aabf8c4ce919c2e24ace49641ea429360018816371a3d470427fc02ab11156c5
MD5 ef6344ea1005575bd6ff3db195facd27
BLAKE2b-256 e567a3745d1ac6780c655a4bfe2bb260f827066428695e1dcf3df9796c734fa7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page