Skip to main content

Composable data loading modules for PyTorch

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchdata-0.5.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchdata-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

torchdata-0.5.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchdata-0.5.0-cp310-cp310-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchdata-0.5.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchdata-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

torchdata-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchdata-0.5.0-cp39-cp39-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchdata-0.5.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchdata-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

torchdata-0.5.0-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchdata-0.5.0-cp38-cp38-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

torchdata-0.5.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

torchdata-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

torchdata-0.5.0-cp37-cp37m-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file torchdata-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 06b39e29bae76745ecff49422fd6901f188621e7b282f85ec3b8757c25f6c08c
MD5 ab0608ea873d9aa8f9452bbee16dbead
BLAKE2b-256 117869c5d2a8aa286fa2b95c02b882a17587cfa19ea3cea6e02a2edbc829a386

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 760880e562f8d701c039c21605d34eca730455fbdb14f961be772d88c00171d4
MD5 b56926a17eeccfcf4bb2b80780e71de1
BLAKE2b-256 2265a4d8c4e4dfb6e7ee854fea9f7f48d459961f3f162450e1e0ae4a47ed0d04

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1621957441ec38b346d83a8bff6d0211aa0b5c56961ca976bd0856cade903430
MD5 3b528d93b3957e95397ae7709d8555f8
BLAKE2b-256 3a0862e895a9a550ca65bc396826952585636352fc27e77fc90f7d86bd757b5d

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3adcb4ec50980ab9acc6d8c805a0be55032622047e744b315c85c68bc457ae6b
MD5 52f149a4c7b7ba289d3fd5e8a37f7eea
BLAKE2b-256 bcc7ef8d65aac3f01926f10f342e5655a1d5386edc29c08c0f569a70ab6dd910

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchdata-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for torchdata-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 588b75557923bc73dd4c87646d13a6bbcadf16994564575d99bb577a19b84d57
MD5 d7cd2f6315fa71774af611dc006d017f
BLAKE2b-256 fad88d782949737894adcd62570c057686e0afe1c79fa04dee483e543d50226a

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e674a353e8d8656f142130f2abebc79ff31bf0ca4fefeac54365743c8d6ab46d
MD5 1f238e83b712213de14b3b8ea3fddd77
BLAKE2b-256 8f0d3e9d5fe15861b1a17bc083f71160b1b6d297809585a93c0e3a80eff9e13c

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74772b580fbf3f0f1bfd86930f7f0ab71c03e88489c7729d6132017a9fd3d872
MD5 c797e44907f8e8b7b3e08627b2b29006
BLAKE2b-256 db634efe77275d41438acb85834989d3997b0c5b8c752bc86984b9e01e1da641

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 43b35413cb687de9d55e52bb4ce5103b3ca11280aafde63316c630d78026e004
MD5 482dc5ae223183eb4d0a00f42e82400c
BLAKE2b-256 1f08915bcfdd44bca9120dc75f7440ceab4146aee6753d473a6bd501fb49a0f1

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchdata-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for torchdata-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 861a85474a6358be28dc9333ed2b267ed85c42f5b749eab55f2b5f5a9bf25931
MD5 4cd89bb30bb3a2f41ee444b3b1e65e0f
BLAKE2b-256 7bec33120baba5467959f453b25662b23e7a3a870b9769b0f1a8677dcfaed64d

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7d295a6a8898706dbc53d7a1683a65dfcb6766d54e9e0afbd722919b8176101
MD5 d4fbe4b0cdff327b3916ebdb17d05518
BLAKE2b-256 dc86a03a08610c5eaeadba78a38fc226c39226957bade90bee0dd7a704899dfe

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e710c9dac72d23ffa09eb17e7d726953718829cf02314c57b6a34aec633c11f0
MD5 0b3a2ff2b540c0d1002a2e09594515d5
BLAKE2b-256 16481cf10faa77815c75083569de19a23d96022e9c2e64425a8d5228c370f3f9

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e34da29fa6afa47d5ab1595b3745a5540673e99f63cc27b92a9e8ba57ec28d13
MD5 757432870dbb3f0a66cafa9356c4ae71
BLAKE2b-256 381c16c7a4086d4511a2267baffa772db6e6a9e3ee8dee043df8d54158971505

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 73583d17fb4c75639db22025ec45d518fa781484e13b38308d417759b249fa05
MD5 d09105f2d23b9cc125d38bbdb8ef71da
BLAKE2b-256 4a2ab74de33e8263c5b9f7371dcbf8c1e867a76bf09e04582239d433f1b71f3b

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a9d5ac8203c52c869370740f6b3d75d4127ebabf431b8a57eeec6167b3bb7ab
MD5 8e6211f3df3793917fafc2abf6513f1a
BLAKE2b-256 2514bdde2945e19f07ad6663f2859fabaccdcfc25d9881eeb5fe0c30feaa9490

See more details on using hashes here.

Provenance

File details

Details for the file torchdata-0.5.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchdata-0.5.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 abdcbd04832a5ad24c0693a2b6f838a76e4db865333c79b53ff327b82b51a715
MD5 a1239191d1ba4dffa342e83f2fbb8887
BLAKE2b-256 a35c017c1d248ff67dc61a94a02935e06572d7ace449fcd20e985c4cc276ef60

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page