Skip to main content

A library for providing a simple interface to create new metrics and an easy-to-use toolkit for metric computations and checkpointing.

Project description

TorchEval

build status pypi version pypi nightly version bsd license docs

This library is currently in Alpha and currently does not have a stable release. The API may change and may not be backward compatible. If you have suggestions for improvements, please open a GitHub issue. We'd love to hear your feedback.

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.

Installing TorchEval

Requires Python >= 3.7 and PyTorch >= 1.11

From pip:

pip install torcheval

For nighly build version

pip install --pre torcheval-nightly

From source:

git clone https://github.com/pytorch/torcheval
cd torcheval
pip install -r requirements.txt
python setup.py install

Quick Start

cd torcheval
python examples/simple_example.py

Documentation

Documentation can be found at at pytorch.github.io/torcheval

Using TorchEval

TorchEval can be run on CPU, GPU, and Multi-GPUs/Muti-Nodes.

For the multiple devices usage:

import torch
from torcheval.metrics.toolkit import sync_and_compute
from torcheval.metrics import MulticlassAccuracy

local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size  = int(os.environ["WORLD_SIZE"])

device = torch.device(
    f"cuda:{local_rank}"
    if torch.cuda.is_available() and torch.cuda.device_count() >= world_size
    else "cpu"
)

metric = MulticlassAccuracy(device=device)
num_epochs, num_batches = 4, 8

for epoch in range(num_epochs):
    for i in range(num_batches):
        input = torch.randint(high=5, size=(10,), device=device)
        target = torch.randint(high=5, size=(10,), device=device)

        # metric.update() updates the metric state with new data
        metric.update(input, target)


        # metric.compute() returns metric value from all seen data on the local process.
        local_compute_result = metric.compute()

        # sync_and_compute(metric) returns metric value from all seen data on all processes.
        # It gives the same result as ``metric.compute()`` if it's run on single process.
        global_compute_result = sync_and_compute(metric)

        # The final result is collected by rank 0
        if global_rank == 0:
            print(global_compute_result)

    # metric.reset() cleans up all seen data
    metric.reset()

See the example directory for more examples.

Contributing

We welcome PRs! See the CONTRIBUTING file.

License

TorchEval is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torcheval-nightly-2022.10.10.tar.gz (60.0 kB view details)

Uploaded Source

Built Distribution

torcheval_nightly-2022.10.10-py3-none-any.whl (110.6 kB view details)

Uploaded Python 3

File details

Details for the file torcheval-nightly-2022.10.10.tar.gz.

File metadata

File hashes

Hashes for torcheval-nightly-2022.10.10.tar.gz
Algorithm Hash digest
SHA256 a9bb3e58a44e8b96d223cdcaefc09961e8dfaa510da7022c1b799a6657b8becc
MD5 f05193848003aac25ba7fd830c76fdaa
BLAKE2b-256 d87ff169ed73e319756f8424169eb033126875d6fcf1ac61571108a731e3690c

See more details on using hashes here.

Provenance

File details

Details for the file torcheval_nightly-2022.10.10-py3-none-any.whl.

File metadata

File hashes

Hashes for torcheval_nightly-2022.10.10-py3-none-any.whl
Algorithm Hash digest
SHA256 62229315c3d8c765f552353ed3dede76ef8b47e1c03466e8178f3dcd98bd3470
MD5 3bfb7302f2f68a723cf12b39c0c85cc5
BLAKE2b-256 644ec5f619c62391db2df8c03e75a6c0eb21588969434f34e4eb91ac56bcb818

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page