Skip to main content

A library for providing a simple interface to create new metrics and an easy-to-use toolkit for metric computations and checkpointing.

Project description

TorchEval

build status pypi version pypi nightly version bsd license docs

This library is currently in Alpha and currently does not have a stable release. The API may change and may not be backward compatible. If you have suggestions for improvements, please open a GitHub issue. We'd love to hear your feedback.

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.

Installing TorchEval

Requires Python >= 3.8 and PyTorch >= 1.11

From pip:

pip install torcheval

For nighly build version

pip install --pre torcheval-nightly

From source:

git clone https://github.com/pytorch/torcheval
cd torcheval
pip install -r requirements.txt
python setup.py install

Quick Start

Take a look at the quickstart notebook, or fork it on Colab.

There are more examples in the examples directory:

cd torcheval
python examples/simple_example.py

Documentation

Documentation can be found at at pytorch.org/torcheval

Using TorchEval

TorchEval can be run on CPU, GPU, and in a multi-process or multi-GPU setting. Metrics are provided in two interfaces, functional and class based. The functional interfaces can be found in torcheval.metrics.functional and are useful when your program runs in a single process setting. To use multi-process or multi-gpu configurations, the class-based interfaces, found in torcheval.metrics provide a much simpler experience. The class based interfaces also allow you to defer some of the computation of the metric by calling update() multiple times before compute(). This can be advantageous even in a single process setting due to saved computation overhead.

Single Process

For use in a single process program, the simplest use case utilizes a functional metric. We simply import the metric function and feed in our outputs and targets. The example below shows a minimal PyTorch training loop that evaluates the multiclass accuracy of every fourth batch of data.

Functional Version (immediate computation of metric)

import torch
from torcheval.metrics.functional import multiclass_accuracy

NUM_BATCHES = 16
BATCH_SIZE = 8
INPUT_SIZE = 10
NUM_CLASSES = 6
eval_frequency = 4

model = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())
optim = torch.optim.Adagrad(model.parameters(), lr=0.001)
loss_fn = torch.nn.CrossEntropyLoss()

metric_history = []
for batch in range(NUM_BATCHES):
    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))
    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)
    outputs = model(input)

    loss = loss_fn(outputs, target)
    optim.zero_grad()
    loss.backward()
    optim.step()

    # metric only computed every 4 batches,
    # data from previous three batches is lost
    if (batch + 1) % eval_frequency == 0:
        metric_history.append(multiclass_accuracy(outputs, target))

Single Process with Deferred Computation

Class Version (enables deferred computation of metric)

import torch
from torcheval.metrics import MulticlassAccuracy

NUM_BATCHES = 16
BATCH_SIZE = 8
INPUT_SIZE = 10
NUM_CLASSES = 6
eval_frequency = 4

model = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())
optim = torch.optim.Adagrad(model.parameters(), lr=0.001)
loss_fn = torch.nn.CrossEntropyLoss()
metric = MulticlassAccuracy()

metric_history = []
for batch in range(NUM_BATCHES):
    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))
    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)
    outputs = model(input)

    loss = loss_fn(outputs, target)
    optim.zero_grad()
    loss.backward()
    optim.step()

    # metric only computed every 4 batches,
    # data from previous three batches is included
    metric.update(input, target)
    if (batch + 1) % eval_frequency == 0:
        metric_history.append(metric.compute())
        # remove old data so that the next call
        # to compute is only based off next 4 batches
        metric.reset()

Multi-Process or Multi-GPU

For usage on multiple devices a minimal example is given below. In the normal torch.distributed paradigm, each device is allocated its own process gets a unique numerical ID called a "global rank", counting up from 0.

Class Version (enables deferred computation and multi-processing)

import torch
from torcheval.metrics.toolkit import sync_and_compute
from torcheval.metrics import MulticlassAccuracy

# Using torch.distributed
local_rank = int(os.environ["LOCAL_RANK"]) #rank on local machine, i.e. unique ID within a machine
global_rank = int(os.environ["RANK"]) #rank in global pool, i.e. unique ID within the entire process group
world_size  = int(os.environ["WORLD_SIZE"]) #total number of processes or "ranks" in the entire process group

device = torch.device(
    f"cuda:{local_rank}"
    if torch.cuda.is_available() and torch.cuda.device_count() >= world_size
    else "cpu"
)

metric = MulticlassAccuracy(device=device)
num_epochs, num_batches = 4, 8

for epoch in range(num_epochs):
    for i in range(num_batches):
        input = torch.randint(high=5, size=(10,), device=device)
        target = torch.randint(high=5, size=(10,), device=device)

        # Add data to metric locally
        metric.update(input, target)

        # metric.compute() will returns metric value from
        # all seen data on the local process since last reset()
        local_compute_result = metric.compute()

        # sync_and_compute(metric) syncs metric data across all ranks and computes the metric value
        global_compute_result = sync_and_compute(metric)
        if global_rank == 0:
            print(global_compute_result)

    # metric.reset() clears the data on each process so that subsequent
    # calls to compute() only act on new data
    metric.reset()

See the example directory for more examples.

Contributing

We welcome PRs! See the CONTRIBUTING file.

License

TorchEval is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torcheval-nightly-2023.11.26.tar.gz (106.1 kB view details)

Uploaded Source

Built Distribution

torcheval_nightly-2023.11.26-py3-none-any.whl (190.8 kB view details)

Uploaded Python 3

File details

Details for the file torcheval-nightly-2023.11.26.tar.gz.

File metadata

  • Download URL: torcheval-nightly-2023.11.26.tar.gz
  • Upload date:
  • Size: 106.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for torcheval-nightly-2023.11.26.tar.gz
Algorithm Hash digest
SHA256 6774300b92b62f847bb147d2ff926db2c198b6896dcce6d29a10c21492061f3e
MD5 7b18f153a561239c6fe2cd1498bece41
BLAKE2b-256 37e582e357922a1e184e53008c3b7c8dc5b724dcc396a1aa2d026bd86b29ddbc

See more details on using hashes here.

Provenance

File details

Details for the file torcheval_nightly-2023.11.26-py3-none-any.whl.

File metadata

File hashes

Hashes for torcheval_nightly-2023.11.26-py3-none-any.whl
Algorithm Hash digest
SHA256 dfc627fcbee68d23a7f4ec25768c53190e2a5a6f1a230432c8e6fc55240aa521
MD5 243e31dd769d90ec195c4a9b76a23056
BLAKE2b-256 e86c1a9a2c598d201b4ba01b29356aec327236d269b97ec839302df5287b4c51

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page