Skip to main content

GPipe for PyTorch

Project description

A GPipe implementation in PyTorch.

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
    output = model(input)

What is GPipe?

GPipe is a scalable pipeline parallelism library published by Google Brain, which allows efficient training of large, memory-consuming models. According to the paper, GPipe can train a 25x larger model by using 8x devices (TPU), and train a model 3.5x faster by using 4x devices.

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Google trained AmoebaNet-B with 557M parameters over GPipe. This model has achieved 84.3% top-1 and 97.0% top-5 accuracy on ImageNet classification benchmark (the state-of-the-art performance as of May 2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchgpipe-0.0.5.tar.gz (30.6 kB view details)

Uploaded Source

File details

Details for the file torchgpipe-0.0.5.tar.gz.

File metadata

  • Download URL: torchgpipe-0.0.5.tar.gz
  • Upload date:
  • Size: 30.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for torchgpipe-0.0.5.tar.gz
Algorithm Hash digest
SHA256 4e9a6db682787c3d9aa1423e771ddc3801866da176ae561b026a8c9c380d9c64
MD5 f2c28e5ad0b2652f36eb39bf28fcd1b1
BLAKE2b-256 47ac8c4f6d058e87403643c49c00bc18c97b553b6d6d60a295a4b9168710a93d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page