Skip to main content

Tools for loading, augmenting and writing 3D medical images on PyTorch.

Project description

TorchIO

PyPI downloads PyPI version Google Colab Documentation status Build status Coverage status Code quality Code maintainability Slack


🎉 News: the paper is out! 🎉

See the Credits section below for more information.


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

TorchIO is a Python package containing a set of tools to efficiently read, sample and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet.

Documentation

The documentation is hosted on Read the Docs.

Please create a new issue if you think something is missing.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite the paper:

Pérez-García et al., 2020, TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.

BibTeX entry:

@misc{fern2020torchio,
    title={TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    author={Fernando Pérez-García and Rachel Sparks and Sebastien Ourselin},
    year={2020},
    eprint={2003.04696},
    archivePrefix={arXiv},
    primaryClass={eess.IV}
}

History

0.15.0 (07-04-2020)

  • Refactor RandomElasticDeformation transform
  • Make Subject inherit from dict

0.14.0 (31-03-2020)

  • Add datasets module
  • Add support for DICOM files
  • Add documentation
  • Add CropOrPad transform

0.13.0 (24-02-2020)

  • Add Subject class
  • Add random blur transform
  • Add lambda transform
  • Add random patches swapping transform
  • Add MRI k-space ghosting artefact augmentation

0.12.0 (21-01-2020)

  • Add ToCanonical transform
  • Add CenterCropOrPad transform

0.11.0 (15-01-2020)

  • Add Resample transform

0.10.0 (15-01-2020)

  • Add Pad transform
  • Add Crop transform

0.9.0 (14-01-2020)

  • Add CLI tool to transform an image from file

0.8.0 (11-01-2020)

  • Add Image class

0.7.0 (02-01-2020)

  • Make transforms use PyTorch tensors consistently

0.6.0 (02-01-2020)

  • Add support for NRRD

0.5.0 (01-01-2020)

  • Add bias field transform

0.4.0 (29-12-2019)

  • Add MRI k-space motion artefact augmentation

0.3.0 (21-12-2019)

  • Add Rescale transform
  • Add support for multimodal data and missing modalities

0.2.0 (2019-12-06)

  • First release on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchio-0.15.3.tar.gz (21.8 MB view details)

Uploaded Source

Built Distribution

torchio-0.15.3-py2.py3-none-any.whl (68.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torchio-0.15.3.tar.gz.

File metadata

  • Download URL: torchio-0.15.3.tar.gz
  • Upload date:
  • Size: 21.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.1

File hashes

Hashes for torchio-0.15.3.tar.gz
Algorithm Hash digest
SHA256 526a83c2037ec9f0bf77abf7a30b5386de1f363ffb2be8a0bb3fc52aedae2222
MD5 709ddafb5824c68998d3deaf69b42101
BLAKE2b-256 47ae657eaa7706fc777ed053495ad15cd3342883fc9a6e284c74965574654779

See more details on using hashes here.

File details

Details for the file torchio-0.15.3-py2.py3-none-any.whl.

File metadata

  • Download URL: torchio-0.15.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 68.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.1

File hashes

Hashes for torchio-0.15.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 75a556015fae47daaba4b636b9ac9303db7df359ac8f7b5cbf18e5f65718e277
MD5 631ba5b827d678ede6e1d987a416bc82
BLAKE2b-256 7ac74c4c0842f43cc2975ffc2ec803df28f6ba4c468e8fafd55e82cd009539d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page