Skip to main content

Tools for loading, augmenting and writing 3D medical images on PyTorch.

Project description

TorchIO

PyPI downloads PyPI version Google Colab Documentation status Build status Coverage status Code quality Code maintainability Slack


🎉 News: the paper is out! 🎉

See the Credits section below for more information.


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

TorchIO is a Python package containing a set of tools to efficiently read, sample and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet.

Documentation

The documentation is hosted on Read the Docs.

Please create a new issue if you think something is missing.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite the paper:

Pérez-García et al., 2020, TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.

BibTeX entry:

@misc{fern2020torchio,
    title={TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    author={Fernando Pérez-García and Rachel Sparks and Sebastien Ourselin},
    year={2020},
    eprint={2003.04696},
    archivePrefix={arXiv},
    primaryClass={eess.IV}
}

History

0.15.0 (07-04-2020)

  • Refactor RandomElasticDeformation transform
  • Make Subject inherit from dict

0.14.0 (31-03-2020)

  • Add datasets module
  • Add support for DICOM files
  • Add documentation
  • Add CropOrPad transform

0.13.0 (24-02-2020)

  • Add Subject class
  • Add random blur transform
  • Add lambda transform
  • Add random patches swapping transform
  • Add MRI k-space ghosting artefact augmentation

0.12.0 (21-01-2020)

  • Add ToCanonical transform
  • Add CenterCropOrPad transform

0.11.0 (15-01-2020)

  • Add Resample transform

0.10.0 (15-01-2020)

  • Add Pad transform
  • Add Crop transform

0.9.0 (14-01-2020)

  • Add CLI tool to transform an image from file

0.8.0 (11-01-2020)

  • Add Image class

0.7.0 (02-01-2020)

  • Make transforms use PyTorch tensors consistently

0.6.0 (02-01-2020)

  • Add support for NRRD

0.5.0 (01-01-2020)

  • Add bias field transform

0.4.0 (29-12-2019)

  • Add MRI k-space motion artefact augmentation

0.3.0 (21-12-2019)

  • Add Rescale transform
  • Add support for multimodal data and missing modalities

0.2.0 (2019-12-06)

  • First release on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchio-0.16.0.tar.gz (21.8 MB view details)

Uploaded Source

Built Distribution

torchio-0.16.0-py2.py3-none-any.whl (70.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torchio-0.16.0.tar.gz.

File metadata

  • Download URL: torchio-0.16.0.tar.gz
  • Upload date:
  • Size: 21.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.1

File hashes

Hashes for torchio-0.16.0.tar.gz
Algorithm Hash digest
SHA256 2c3d98e19b460abbb4a2cfa2359783de718d69b1766170c9227a55e5db2ea750
MD5 95523ca4c28028e8beada67d4e5e9bfd
BLAKE2b-256 3cdd0aaff8adb64dad2d4455f5390fccf6a245b5d243a5051459c0ea8accef81

See more details on using hashes here.

File details

Details for the file torchio-0.16.0-py2.py3-none-any.whl.

File metadata

  • Download URL: torchio-0.16.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 70.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.1

File hashes

Hashes for torchio-0.16.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 26e332ceea5de3a584489361664d6e4daf656a633da9243bf7c1dc2bd823088e
MD5 b12e115d5fd80f1575474b2f2bae4c24
BLAKE2b-256 d94150713985edfc37e911c9c23312977b70dcdec4177d869d40a2111140bc9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page