Skip to main content

Tools for loading, augmenting and writing 3D medical images on PyTorch.

Project description

TorchIO

Tools like TorchIO are a symptom of the maturation of medical AI research using deep learning techniques.

Jack Clark, Policy Director at OpenAI (link).


PyPI downloads PyPI version Google Colab Documentation status Build status Coverage status Code quality Code maintainability Slack All Contributors


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

Queue

(Queue for patch-based training)


TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet, which is not actively maintained anymore.

Documentation

The documentation is hosted on Read the Docs.

Please create a new issue if you think something is missing.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite the paper:

Pérez-García et al., 2020, TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.

BibTeX entry:

@misc{fern2020torchio,
    title={TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    author={Fernando Pérez-García and Rachel Sparks and Sebastien Ourselin},
    year={2020},
    eprint={2003.04696},
    archivePrefix={arXiv},
    primaryClass={eess.IV}
}

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Fernando Pérez-García

💻 📖

valabregue

🤔 👀 💻

GFabien

💻

G.Reguig

💻

Niels Schurink

💻

Ibrahim Hadzic

🐛

ReubenDo

🤔

Julian Klug

🤔

David Völgyes

🤔

Jean-Christophe Fillion-Robin

📖

Suraj Pai

🤔

Ben Darwin

🤔

This project follows the all-contributors specification. Contributions of any kind welcome!

History

0.15.0 (07-04-2020)

  • Refactor RandomElasticDeformation transform
  • Make Subject inherit from dict

0.14.0 (31-03-2020)

  • Add datasets module
  • Add support for DICOM files
  • Add documentation
  • Add CropOrPad transform

0.13.0 (24-02-2020)

  • Add Subject class
  • Add random blur transform
  • Add lambda transform
  • Add random patches swapping transform
  • Add MRI k-space ghosting artefact augmentation

0.12.0 (21-01-2020)

  • Add ToCanonical transform
  • Add CenterCropOrPad transform

0.11.0 (15-01-2020)

  • Add Resample transform

0.10.0 (15-01-2020)

  • Add Pad transform
  • Add Crop transform

0.9.0 (14-01-2020)

  • Add CLI tool to transform an image from file

0.8.0 (11-01-2020)

  • Add Image class

0.7.0 (02-01-2020)

  • Make transforms use PyTorch tensors consistently

0.6.0 (02-01-2020)

  • Add support for NRRD

0.5.0 (01-01-2020)

  • Add bias field transform

0.4.0 (29-12-2019)

  • Add MRI k-space motion artefact augmentation

0.3.0 (21-12-2019)

  • Add Rescale transform
  • Add support for multimodal data and missing modalities

0.2.0 (2019-12-06)

  • First release on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchio-0.16.14.tar.gz (23.1 MB view details)

Uploaded Source

Built Distribution

torchio-0.16.14-py2.py3-none-any.whl (81.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torchio-0.16.14.tar.gz.

File metadata

  • Download URL: torchio-0.16.14.tar.gz
  • Upload date:
  • Size: 23.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.1

File hashes

Hashes for torchio-0.16.14.tar.gz
Algorithm Hash digest
SHA256 b41cc3578fe62c4041830727fd38e56bf1ec766b0f219999fd7355eb07b1f418
MD5 65e0004bb6fd0dd2d3d144e82a8ec593
BLAKE2b-256 df4adf1412b2b6d0468b023afc82162c7067cfdc570e34c89f79a2bdfb46e202

See more details on using hashes here.

File details

Details for the file torchio-0.16.14-py2.py3-none-any.whl.

File metadata

  • Download URL: torchio-0.16.14-py2.py3-none-any.whl
  • Upload date:
  • Size: 81.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.1

File hashes

Hashes for torchio-0.16.14-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 11676c164bb6d61624ab666a8f953eeff8b93cfe4ccfdbc18ad08eda50f4f734
MD5 9b914810baa3954f8a53f38c596c8e66
BLAKE2b-256 c26d3b9644b610f0e4d4548c7a481b3b3cf19274cba70ecb7630a6d375ca93c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page