Skip to main content

Tools for medical image processing with PyTorch

Project description

TorchIO logo

Tools like TorchIO are a symptom of the maturation of medical AI research using deep learning techniques.

Jack Clark, Policy Director at OpenAI (link).


Package PyPI downloads PyPI version Conda version
CI Tests status Documentation status Coverage status
Code Code quality Code maintainability pre-commit
Tutorials Google Colab
Community Slack Twitter Twitter YouTube

Progressive artifacts

Augmentation


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

Queue

(Queue for patch-based training)


TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet, which is not actively maintained anymore.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite our paper:

F. Pérez-García, R. Sparks, and S. Ourselin. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine (June 2021), p. 106236. ISSN: 0169-2607.doi:10.1016/j.cmpb.2021.106236.

BibTeX entry:

@article{perez-garcia_torchio_2021,
    title = {TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    journal = {Computer Methods and Programs in Biomedicine},
    pages = {106236},
    year = {2021},
    issn = {0169-2607},
    doi = {https://doi.org/10.1016/j.cmpb.2021.106236},
    url = {https://www.sciencedirect.com/science/article/pii/S0169260721003102},
    author = {P{\'e}rez-Garc{\'i}a, Fernando and Sparks, Rachel and Ourselin, S{\'e}bastien},
}

This project is supported by the following institutions:

Getting started

See Getting started for installation instructions and a Hello, World! example.

Longer usage examples can be found in the tutorials.

All the documentation is hosted on Read the Docs.

Please open a new issue if you think something is missing.

Contributors

Thanks goes to all these people (emoji key):


Fernando Pérez-García

💻 📖

valabregue

🤔 👀 💻 💬

GFabien

💻 👀 🤔

G.Reguig

💻

Niels Schurink

💻

Ibrahim Hadzic

🐛

ReubenDo

🤔

Julian Klug

🤔

David Völgyes

🤔 💻

Jean-Christophe Fillion-Robin

📖

Suraj Pai

🤔

Ben Darwin

🤔

Oeslle Lucena

🐛

Soumick Chatterjee

💻

neuronflow

📖

Jan Witowski

📖

Derk Mus

📖 💻 🐛

Christian Herz

🐛

Cory Efird

💻 🐛

Esteban Vaca C.

🐛

Ray Phan

🐛

Akis Linardos

🐛 💻

Nina Montana-Brown

📖 🚇

fabien-brulport

🐛

malteekj

🐛

Andres Diaz-Pinto

🐛

Sarthak Pati

📦

GabriellaKamlish

🐛

Tyler Spears

🐛

DaGuT

📖

Xiangyu Zhao

🐛

siahuat0727

📖 🐛

Svdvoort

💻

Albans98

💻

Matthew T. Warkentin

💻

glupol

🐛

ramonemiliani93

📖 🐛

Justus Schock

💻 🐛

Stefan Milorad Radonjić

🐛

Sajan Gohil

🐛

Ikko Ashimine

📖

laynr

📖

Omar U. Espejel

🔊

James Butler

🐛

res191

🔍

nengwp

🐛 📖

susanveraclarke

🎨

nepersica

🐛

Sebastian Penhouet

🤔

Bigsealion

🐛

Dženan Zukić

👀

vasl12

🐛

François Rousseau

🐛

snavalm

💻

Jacob Reinhold

💻

Hsu

🐛

snipdome

🐛

SmallY

🐛

guigautier

🤔

AyedSamy

🐛

J. Miguel Valverde

🤔 💻

José Guilherme Almeida

🤔

Asim Usman

🐛

cbri92

🐛

Markus J. Ankenbrand

🐛

Ziv Yaniv

📖

Luca Lumetti

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchio-0.18.83.tar.gz (39.9 MB view details)

Uploaded Source

Built Distribution

torchio-0.18.83-py2.py3-none-any.whl (170.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torchio-0.18.83.tar.gz.

File metadata

  • Download URL: torchio-0.18.83.tar.gz
  • Upload date:
  • Size: 39.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for torchio-0.18.83.tar.gz
Algorithm Hash digest
SHA256 715b8adecf8613f51513e6504ce88c80f54f85fb6cff300d52d558962b63a67e
MD5 61e367bc008981799a67ed4daf897144
BLAKE2b-256 58096ad110cf879b8f51f201dde79b3b73c31200cec46b2f642133d32e73bdaa

See more details on using hashes here.

File details

Details for the file torchio-0.18.83-py2.py3-none-any.whl.

File metadata

  • Download URL: torchio-0.18.83-py2.py3-none-any.whl
  • Upload date:
  • Size: 170.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for torchio-0.18.83-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 77199de9d9c14dfb287d81b811de3e642b35e9d27e086eeaca35e82596de15c3
MD5 097d43ca658e29cac9484e1c1fe9f62b
BLAKE2b-256 e3f7c60c1be0948387c5d9c77374d8b766ca062d90cf6f3562a8fdbebedf244b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page