Skip to main content

An easy-to-use Kaiser-Bessel NUFFT for PyTorch

Project description

Torch KB-NUFFT

Simple installation from PyPI:

pip install torchkbnufft

About

Torch KB-NUFFT implements a non-uniform Fast Fourier Transform with Kaiser-Bessel gridding in PyTorch. The implementation is completely in Python, facilitating robustness and flexible deployment in human-readable code. NUFFT functions are each wrapped as a torch.autograd.Function, allowing backpropagation through NUFFT operators for training neural networks.

Documentation

Most files are accompanied with docstrings that can be read with help while running IPython. Example:

from torchkbnufft import KbNufft

help(KbNufft)

Behavior can also be inferred by inspecting the source code at https://github.com/mmuckley/torchkbnufft.

Examples

Simple Forward NUFFT

Jupyter notebook examples are in the notebooks/ folder. The following minimalist code loads a Shepp-Logan phantom and computes a single radial spoke of k-space data:

import torch
import numpy as np
from torchkbnufft import KbNufft
from skimage.data import shepp_logan_phantom

x = shepp_logan_phantom().astype(np.complex)
im_size = x.shape
x = np.stack((np.real(x), np.imag(x)))
# convert to tensor, unsqueeze batch and coil dimension
# output size: (1, 1, 2, ny, nx)
x = torch.tensor(x).unsqueeze(0).unsqueeze(0)

klength = 64
ktraj = np.stack(
    (np.zeros(64), np.linspace(-np.pi, np.pi, klength))
)
# convert to tensor, unsqueeze batch dimension
# output size: (1, 2, klength)
ktraj = torch.tensor(ktraj).unsqueeze(0)

nufft_ob = KbNufft(im_size=im_size)
# outputs a (1, 1, 2, klength) vector of k-space data
y = nufft_ob(x, ktraj)

A detailed example of basic NUFFT usage is included in notebooks/Basic Example.ipynb.

SENSE-NUFFT

The package also includes utilities for working with SENSE-NUFFT operators. The above code can be modified to replace the nufft_ob with the following sensenufft_ob:

from torchkbnufft import MriSenseNufft

sensenufft_ob = MriSenseNufft(im_size=im_size, smap=smap)

Application of the object in place of nufft_ob above would first multiply by the sensitivity coils in smap, then compute a 64-length radial spoke for each coil. All operations are broadcast across coils, which minimizes interaction with the Python interpreter and maximizes computation speed.

A detailed example of SENSE-NUFFT usage is included in notebooks/SENSE Example.ipynb.

Sparse Matrix Precomputation

In order to conserve memory, in normal operation mode the package includes a loop over interpolation offsets and calculates interpolation coefficients for each offset. This process can become slow due to calls to the Python interpreter. To avoid interpreter calls, one can instead precompute a sparse interpolation matrix:

from torchkbnufft import AdjKbNufft
from torchkbnufft.nufft.sparse_interp_mat import precomp_sparse_mats

adjnufft_ob = AdjKbNufft(im_size=im_size)

# precompute the sparse interpolation matrices
real_mat, imag_mat = precomp_sparse_mats(ktraj, adjnufft_ob)
interp_mats = {
    'real_interp_mats': real_mat,
    'imag_interp_mats': imag_mat
}

# use sparse matrices in adjoint
image = adjnufft_ob(kdata, ktraj, interp_mats)

A detailed example of sparse matrix precomputation usage is included in notebooks/Sparse Matrix Example.ipynb.

Running on the GPU

All of the examples included in this repository can be run on the GPU by sending the NUFFT object and data to the GPU prior to the function call, e.g.:

adjnufft_ob = adjnufft_ob.to(torch.device('cuda'))
kdata = kdata.to(torch.device('cuda'))
ktraj = ktraj.to(torch.device('cuda'))

image = adjnufft_ob(kdata, ktraj)

Similar to programming low-level code, PyTorch will throw errors if the underlying dtype and device of all objects are not matching. Be sure to make sure your data and NUFFT objects are on the right device and in the right format to avoid these errors.

Citation

If you want to cite the package, you can use the following:

@misc{Muckley2019,
  author = {Muckley, M.J. et al.},
  title = {Torch KB-NUFFT},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mmuckley/torchkbnufft}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchkbnufft-0.1.0.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

torchkbnufft-0.1.0-py3-none-any.whl (28.6 kB view details)

Uploaded Python 3

File details

Details for the file torchkbnufft-0.1.0.tar.gz.

File metadata

  • Download URL: torchkbnufft-0.1.0.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for torchkbnufft-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f2b209d28140a834a8c758b9590cd292c785ecc0cd9d506538a77379695e3300
MD5 8eb48813e2fc2726451e8dc0bfb40e96
BLAKE2b-256 b08f4481cd0aa7e3b7fd95ccb5f15a85e3bd814a441f7e107154e38ff420918d

See more details on using hashes here.

File details

Details for the file torchkbnufft-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: torchkbnufft-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 28.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for torchkbnufft-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5847dd8a006fad8c4224043c94a869512b4fe0ceb90c0f99e82715456370021f
MD5 ab65e5f6a1b8780423e0b36f5e038833
BLAKE2b-256 2f3ce66ebe286e92b576169164ba863aa95bb874f1d84ea5ad157e7cf8785c8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page