Skip to main content

Pytorch domain library for recommendation systems

Project description

TorchRec (Beta Release)

TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.

TorchRec contains:

  • Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism.
  • The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding.
  • The TorchRec planner can automatically generate optimized sharding plans for models.
  • Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance.
  • Optimized kernels for RecSys powered by FBGEMM.
  • Quantization support for reduced precision training and inference.
  • Common modules for RecSys.
  • Production-proven model architectures for RecSys.
  • RecSys datasets (criteo click logs and movielens)
  • Examples of end-to-end training such the dlrm event prediction model trained on criteo click logs dataset.

Installation

Torchrec requires Python >= 3.7 and CUDA >= 11.0 (CUDA is highly recommended for performance but not required). The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

Binaries

Experimental binary on Linux for Python 3.7, 3.8 and 3.9 can be installed via pip wheels

CUDA

conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
pip install torchrec-nightly

CPU Only

conda install pytorch cpuonly -c pytorch-nightly
pip install torchrec-nightly-cpu

Colab example: introduction + install

See this colab notebook for an introduction to torchrec which includes runnable installation.

From Source

We are currently iterating on the setup experience. For now, we provide manual instructions on how to build from source. The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

  1. Install pytorch. See pytorch documentation
conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
  1. Install Requirements
pip install -r requirements.txt
  1. Next, install FBGEMM_GPU from source (included in third_party folder of torchrec) by following the directions here. Installing fbgemm GPU is optional, but using FBGEMM w/ CUDA will be much faster. For CUDA 11.3 and SM80 (Ampere) architecture, the following instructions can be used:
export CUB_DIR=/usr/local/cuda-11.3/include/cub
export CUDA_BIN_PATH=/usr/local/cuda-11.3/
export CUDACXX=/usr/local/cuda-11.3/bin/nvcc
python setup.py install -DTORCH_CUDA_ARCH_LIST="7.0;8.0"

The last line of the above code block (python setup.py install...) which manually installs fbgemm_gpu can be skipped if you do not need to build fbgemm_gpu with custom build-related flags. Skip to the next step if that is the case.

  1. Download and install TorchRec.
git clone --recursive https://github.com/facebookresearch/torchrec

# cd to the directory where torchrec's setup.py is located. Then run one of the below:
cd torchrec
python setup.py install develop --skip_fbgemm  # If you manually installed fbgemm_gpu in the previous step.
python setup.py install develop                # Otherwise. This will run the fbgemm_gpu install step for you behind the scenes.
python setup.py install develop --cpu_only     # For a CPU only installation of FBGEMM
  1. Test the installation.
torchx run --scheduler local_cwd test_installation.py:test_installation
  1. If you want to run a more complex example, please take a look at the torchrec DLRM example.

License

TorchRec is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrec_nightly_cpu-2022.2.22-py39-none-any.whl (2.1 MB view details)

Uploaded Python 3.9

torchrec_nightly_cpu-2022.2.22-py38-none-any.whl (2.1 MB view details)

Uploaded Python 3.8

torchrec_nightly_cpu-2022.2.22-py37-none-any.whl (2.1 MB view details)

Uploaded Python 3.7

File details

Details for the file torchrec_nightly_cpu-2022.2.22-py39-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.2.22-py39-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for torchrec_nightly_cpu-2022.2.22-py39-none-any.whl
Algorithm Hash digest
SHA256 504199a4bd34a86855aa4d699a00110a1c058819aec466134e8fb4db84c57791
MD5 a4d0d1549dae16cf9718e0a1188aebb7
BLAKE2b-256 b99afed2ace3ac6c0954ddf3beff0cff3af3a1838dd142cf14bfd5f9efd8e118

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.2.22-py38-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.2.22-py38-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for torchrec_nightly_cpu-2022.2.22-py38-none-any.whl
Algorithm Hash digest
SHA256 002c94feabe87228315688672d223f9f01e04738a140e8ee8d546edea975ed3e
MD5 53927af0d8358ad49e26b72d18994030
BLAKE2b-256 b0c289aa8ed5cdb981f366e8440a294b0f0d6cad70b640b8e459f25397214417

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.2.22-py37-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.2.22-py37-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11

File hashes

Hashes for torchrec_nightly_cpu-2022.2.22-py37-none-any.whl
Algorithm Hash digest
SHA256 47c2a7cffe008ea8405af808fa6fed310aa5e0b2fea508baeb031cca9d3cc45f
MD5 318aa06b9cb82a87f1cd1b0668d84f02
BLAKE2b-256 3f2ac939362bc247a02dc75a9ad874df7f5c65b53d2cca911762eb24abbe1c0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page