Skip to main content

Pytorch domain library for recommendation systems

Project description

TorchRec (Beta Release)

Docs

TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.

TorchRec contains:

  • Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism.
  • The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding.
  • The TorchRec planner can automatically generate optimized sharding plans for models.
  • Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance.
  • Optimized kernels for RecSys powered by FBGEMM.
  • Quantization support for reduced precision training and inference.
  • Common modules for RecSys.
  • Production-proven model architectures for RecSys.
  • RecSys datasets (criteo click logs and movielens)
  • Examples of end-to-end training such the dlrm event prediction model trained on criteo click logs dataset.

Installation

Torchrec requires Python >= 3.7 and CUDA >= 11.0 (CUDA is highly recommended for performance but not required). The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

Binaries

Experimental binary on Linux for Python 3.7, 3.8 and 3.9 can be installed via pip wheels

CUDA

conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
pip install torchrec-nightly

CPU Only

conda install pytorch cpuonly -c pytorch-nightly
pip install torchrec-nightly-cpu

Colab example: introduction + install

See our colab notebook for an introduction to torchrec which includes runnable installation. - Tutorial Source - Open in Google Colab

From Source

We are currently iterating on the setup experience. For now, we provide manual instructions on how to build from source. The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

  1. Install pytorch. See pytorch documentation

    conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
    
  2. Install Requirements

    pip install -r requirements.txt
    
  3. Next, install FBGEMM_GPU from source (included in third_party folder of torchrec) by following the directions here. Installing fbgemm GPU is optional, but using FBGEMM w/ CUDA will be much faster. For CUDA 11.3 and SM80 (Ampere) architecture, the following instructions can be used:

    export CUB_DIR=/usr/local/cuda-11.3/include/cub
    export CUDA_BIN_PATH=/usr/local/cuda-11.3/
    export CUDACXX=/usr/local/cuda-11.3/bin/nvcc
    python setup.py install -DTORCH_CUDA_ARCH_LIST="7.0;8.0"
    

    The last line of the above code block (python setup.py install...) which manually installs fbgemm_gpu can be skipped if you do not need to build fbgemm_gpu with custom build-related flags. Skip to the next step if that is the case.

  4. Download and install TorchRec.

    git clone --recursive https://github.com/facebookresearch/torchrec
    
    # cd to the directory where torchrec's setup.py is located. Then run one of the below:
    cd torchrec
    python setup.py install develop --skip_fbgemm  # If you manually installed fbgemm_gpu in the previous step.
    python setup.py install develop                # Otherwise. This will run the fbgemm_gpu install step for you behind the scenes.
    python setup.py install develop --cpu_only     # For a CPU only installation of FBGEMM
    
  5. Test the installation.

    torchx run --scheduler local_cwd test_installation.py:test_installation
    
  6. If you want to run a more complex example, please take a look at the torchrec DLRM example.

License

TorchRec is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrec_nightly_cpu-2022.3.2-py39-none-any.whl (2.1 MB view details)

Uploaded Python 3.9

torchrec_nightly_cpu-2022.3.2-py38-none-any.whl (2.1 MB view details)

Uploaded Python 3.8

torchrec_nightly_cpu-2022.3.2-py37-none-any.whl (2.1 MB view details)

Uploaded Python 3.7

File details

Details for the file torchrec_nightly_cpu-2022.3.2-py39-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.2-py39-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for torchrec_nightly_cpu-2022.3.2-py39-none-any.whl
Algorithm Hash digest
SHA256 5d04297470c93782238612d97cb418c766686b168278de34e6efbeec4afa1143
MD5 6ef21a47903901620093805799b62f8e
BLAKE2b-256 0305f108c31b5af853e22a3d4dede644747f245f36c6f78a95b4b1efab36a443

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.2-py38-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.2-py38-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for torchrec_nightly_cpu-2022.3.2-py38-none-any.whl
Algorithm Hash digest
SHA256 a334f37cc56a9be4bcc1d659fe56dc6d93fc7d8895cba05e1532c19f86aee70f
MD5 008155e8c62a4a6abff5134cf1835579
BLAKE2b-256 99c0fd03fd3e184767c71cc847bd11bd084b20f5ff6566278fcc6a08061b75b2

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.2-py37-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.2-py37-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11

File hashes

Hashes for torchrec_nightly_cpu-2022.3.2-py37-none-any.whl
Algorithm Hash digest
SHA256 98d95b4a4fdc4b25c9fd950a4a5ff8f6aa29df9fa50b707431995b4c3de7e75b
MD5 d85d9cb5036934dd2e7fb7661137ace2
BLAKE2b-256 3b25633ef67627b1fe449e429b2eb5d5bcd72f1bb50f83947401c0c8e77e9dde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page