Skip to main content

Pytorch domain library for recommendation systems

Project description

TorchRec (Beta Release)

Docs

TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.

TorchRec contains:

  • Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism.
  • The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding.
  • The TorchRec planner can automatically generate optimized sharding plans for models.
  • Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance.
  • Optimized kernels for RecSys powered by FBGEMM.
  • Quantization support for reduced precision training and inference.
  • Common modules for RecSys.
  • Production-proven model architectures for RecSys.
  • RecSys datasets (criteo click logs and movielens)
  • Examples of end-to-end training such the dlrm event prediction model trained on criteo click logs dataset.

Installation

Torchrec requires Python >= 3.7 and CUDA >= 11.0 (CUDA is highly recommended for performance but not required). The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

Binaries

Experimental binary on Linux for Python 3.7, 3.8 and 3.9 can be installed via pip wheels

CUDA

conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
pip install torchrec-nightly

CPU Only

conda install pytorch cpuonly -c pytorch-nightly
pip install torchrec-nightly-cpu

Colab example: introduction + install

See our colab notebook for an introduction to torchrec which includes runnable installation. - Tutorial Source - Open in Google Colab

From Source

We are currently iterating on the setup experience. For now, we provide manual instructions on how to build from source. The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

  1. Install pytorch. See pytorch documentation

    conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
    
  2. Install Requirements

    pip install -r requirements.txt
    
  3. Next, install FBGEMM_GPU from source (included in third_party folder of torchrec) by following the directions here. Installing fbgemm GPU is optional, but using FBGEMM w/ CUDA will be much faster. For CUDA 11.3 and SM80 (Ampere) architecture, the following instructions can be used:

    export CUB_DIR=/usr/local/cuda-11.3/include/cub
    export CUDA_BIN_PATH=/usr/local/cuda-11.3/
    export CUDACXX=/usr/local/cuda-11.3/bin/nvcc
    python setup.py install -DTORCH_CUDA_ARCH_LIST="7.0;8.0"
    

    The last line of the above code block (python setup.py install...) which manually installs fbgemm_gpu can be skipped if you do not need to build fbgemm_gpu with custom build-related flags. Skip to the next step if that is the case.

  4. Download and install TorchRec.

    git clone --recursive https://github.com/facebookresearch/torchrec
    
    # cd to the directory where torchrec's setup.py is located. Then run one of the below:
    cd torchrec
    python setup.py install develop --skip_fbgemm  # If you manually installed fbgemm_gpu in the previous step.
    python setup.py install develop                # Otherwise. This will run the fbgemm_gpu install step for you behind the scenes.
    python setup.py install develop --cpu_only     # For a CPU only installation of FBGEMM
    
  5. Test the installation.

    torchx run -s local_cwd --script test_installation.py
    

    See TorchX for more information on launching distributed and remote jobs.

  6. If you want to run a more complex example, please take a look at the torchrec DLRM example.

License

TorchRec is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrec_nightly_cpu-2022.3.21-py39-none-any.whl (2.3 MB view details)

Uploaded Python 3.9

torchrec_nightly_cpu-2022.3.21-py38-none-any.whl (2.3 MB view details)

Uploaded Python 3.8

torchrec_nightly_cpu-2022.3.21-py37-none-any.whl (2.3 MB view details)

Uploaded Python 3.7

File details

Details for the file torchrec_nightly_cpu-2022.3.21-py39-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.21-py39-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for torchrec_nightly_cpu-2022.3.21-py39-none-any.whl
Algorithm Hash digest
SHA256 30a958df7955f350996a8b9fadd925db93f3a891dae3fd34017abd3e9ded32d6
MD5 88ca9f770102e77ee3ed2b9b32d74589
BLAKE2b-256 2f6165a8adc601543d97f213732ed11e7c440463b0957923717c772e7f28001f

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.21-py38-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.21-py38-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for torchrec_nightly_cpu-2022.3.21-py38-none-any.whl
Algorithm Hash digest
SHA256 509950198f3dc7cd4e468c7ee3b054d0b8be7069febefce85207d95867f51a21
MD5 54dc1a5d1161e7f5b8c281e2d5e8da0f
BLAKE2b-256 a1f8e6d6a9fe7d21a06e20c93e96b0dfba34d9515a85ac6b1a5df9c583145f3e

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.21-py37-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.21-py37-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11

File hashes

Hashes for torchrec_nightly_cpu-2022.3.21-py37-none-any.whl
Algorithm Hash digest
SHA256 32e11c2b8baeff3951cc92ecdd7db12726421afaf277dbf3be4ab637aca72d9e
MD5 5d49f485822d5b15912fd6370820bef0
BLAKE2b-256 dc7ac53880e4ac5204f68048b16fb50bc39e0ce2ba8b85bc70b96122428b5af2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page