A library for persisting PyTorch program state
Project description
torchsnapshot
This library is currently in Alpha and currently does not have a stable release. The API may change and may not be backward compatible. If you have suggestions for improvements, please open a GitHub issue. We'd love to hear your feedback.
A light-weight library for adding fault tolerance to large-scale PyTorch distributed training workloads.
Install
Requires Python >= 3.7 and PyTorch >= 1.11
From pip:
pip install torchsnapshot
From source:
git clone https://github.com/facebookresearch/torchsnapshot
cd torchsnapshot
pip install -r requirements.txt
python setup.py install
Concepts
- Stateful object - an object that whose state can be obtained via
.state_dict()
and restored via.load_state_dict()
. Most PyTorch components (e.g.Module
,Optimizer
,LRScheduler
) already implement this protocol. - App state - the application state described using multiple stateful objects.
- Snapshot - the persisted app state.
Basic Usage
Describing the application state with multiple stateful objects:
app_state = {"model": model, "optimizer": optimizer}
Taking a snapshot of the application state:
from torchsnapshot import Snapshot
# File System
snapshot = Snapshot.take(path="/foo/bar/baz", app_state=app_state)
# S3
snapshot = Snapshot.take(path="s3://foo/bar", app_state=app_state)
# Google Cloud Storage
snapshot = Snapshot.take(path="gcs://foo/bar", app_state=app_state)
Referencing an existing snapshot:
snapshot = Snapshot(path="foo/bar/baz")
Restoring the application state from a snapshot:
snapshot.restore(app_state=app_state)
See the example directory for more examples.
License
torchsnapshot is BSD licensed, as found in the LICENSE file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for torchsnapshot-nightly-2022.6.16.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | de267040adbc276fdb15bdda8ecdd3a8d4f854bfff6f1bd4bb36d8e01aae5df6 |
|
MD5 | a9d7c9e161f97b6609109c96c5b0ed5e |
|
BLAKE2b-256 | a1b303c0b29f99d1cabd3610bfa68b8ef39c5e0c531f3b3602b37d5be2284815 |
Hashes for torchsnapshot_nightly-2022.6.16a-py3.9.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72d72e04121ee6f1b0b13eea4cafaef8bfaff9abb2e43f81f36373789ba641f6 |
|
MD5 | f331c90e27b34fe743c747bdfff3c2f5 |
|
BLAKE2b-256 | e95bafa12d37eff59537f95da2f2c03032ef19f2371bfdcc29d9305a66cf3213 |
Hashes for torchsnapshot_nightly-2022.6.16a1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86cae647fd77bc9b20f154ac58666292a070c2828ddd4f108162d492277ea99f |
|
MD5 | 2851350b7204c5c74e6ea45d159d42f2 |
|
BLAKE2b-256 | d8c9c388c76fbfaa5e53a338b6dbd86b4c71dbf4bb4c5ae932a48f972748045a |
Hashes for torchsnapshot_nightly-2022.6.16-py3.7.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3b6bc55d5a08ec9cd46e640ca0a0e014173fd3fa505c5e0316b19bbd91279dc |
|
MD5 | 58554529a60a51880fe8f3136fba2df5 |
|
BLAKE2b-256 | 630b72ea579d205b1758a3adea1594882c4c49dc0fa43370eb0738b6bf79f613 |
Hashes for torchsnapshot_nightly-2022.6.16-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b11d60a0b499d3cedf27f99097d6c2745a861954ed459766ac72755257542756 |
|
MD5 | 16755486f3b52deeff19bb013750213e |
|
BLAKE2b-256 | 1315526888e4b0352675aac6cb12644ad530f979e1c285cbecefbef65da60d54 |