Skip to main content

Text utilities and datasets for PyTorch

Project description

https://circleci.com/gh/pytorch/text.svg?style=svg https://codecov.io/gh/pytorch/text/branch/main/graph/badge.svg https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchtext%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

torchtext

This repository consists of:

Note: The legacy code discussed in torchtext v0.7.0 release note has been retired to torchtext.legacy folder. Those legacy code will not be maintained by the development team, and we plan to fully remove them in the future release. See torchtext.legacy folder for more details.

Installation

We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. The following are the corresponding torchtext versions and supported Python versions.

Version Compatibility

PyTorch version

torchtext version

Supported Python version

nightly build

main

>=3.7, <=3.9

1.10.0

0.11.0

>=3.6, <=3.9

1.9.1

0.10.1

>=3.6, <=3.9

1.9

0.10

>=3.6, <=3.9

1.8.2

0.9.2

>=3.6, <=3.9

1.8.1

0.9.1

>=3.6, <=3.9

1.8

0.9

>=3.6, <=3.9

1.7.1

0.8.1

>=3.6, <=3.9

1.7

0.8

>=3.6, <=3.8

1.6

0.7

>=3.6, <=3.8

1.5

0.6

>=3.5, <=3.8

1.4

0.5

2.7, >=3.5, <=3.8

0.4 and below

0.2.3

2.7, >=3.5, <=3.8

Using conda:

conda install -c pytorch torchtext

Using pip:

pip install torchtext

Optional requirements

If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:

pip install spacy
python -m spacy download en_core_web_sm

Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses:

pip install sacremoses

For torchtext 0.5 and below, sentencepiece:

conda install -c powerai sentencepiece

Building from source

To build torchtext from source, you need git, CMake and C++11 compiler such as g++.:

git clone https://github.com/pytorch/text torchtext
cd torchtext
git submodule update --init --recursive

# Linux
python setup.py clean install

# OSX
MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py clean install

# or ``python setup.py develop`` if you are making modifications.

Note

When building from source, make sure that you have the same C++ compiler as the one used to build PyTorch. A simple way is to build PyTorch from source and use the same environment to build torchtext. If you are using the nightly build of PyTorch, checkout the environment it was built with conda (here) and pip (here).

Documentation

Find the documentation here.

Datasets

The datasets module currently contains:

  • Language modeling: WikiText2, WikiText103, PennTreebank, EnWik9

  • Machine translation: IWSLT2016, IWSLT2017, Multi30k

  • Sequence tagging (e.g. POS/NER): UDPOS, CoNLL2000Chunking

  • Question answering: SQuAD1, SQuAD2

  • Text classification: AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull, IMDB

For example, to access the raw text from the AG_NEWS dataset:

>>> from torchtext.datasets import AG_NEWS
>>> train_iter = AG_NEWS(split='train')
>>> # Iterate with for loop
>>> for (label, line) in train_iter:
>>>     print(label, line)
>>> # Or send to DataLoader
>>> from torch.utils.data import DataLoader
>>> train_iter = AG_NEWS(split='train')
>>> dataloader = DataLoader(train_iter, batch_size=8, shuffle=False)

Tutorials

To get started with torchtext, users may refer to the following tutorials available on PyTorch website.

[BC Breaking] Legacy

In the v0.9.0 release, we moved the following legacy code to torchtext.legacy. This is part of the work to revamp the torchtext library and the motivation has been discussed in Issue #664:

  • torchtext.legacy.data.field

  • torchtext.legacy.data.batch

  • torchtext.legacy.data.example

  • torchtext.legacy.data.iterator

  • torchtext.legacy.data.pipeline

  • torchtext.legacy.datasets

We have a migration tutorial to help users switch to the torchtext datasets in v0.9.0 release. For the users who still want the legacy components, they can add legacy to the import path.

In the v0.10.0 release, we retire the Vocab class to torchtext.legacy. Users can still access the legacy Vocab via torchtext.legacy.vocab. This class has been replaced by a Vocab module that is backed by efficient C++ implementation and provides common functional APIs for NLP workflows.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchtext-0.12.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchtext-0.12.0-cp310-cp310-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.10

torchtext-0.12.0-cp310-cp310-manylinux1_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10

torchtext-0.12.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchtext-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

torchtext-0.12.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchtext-0.12.0-cp39-cp39-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9

torchtext-0.12.0-cp39-cp39-manylinux1_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.9

torchtext-0.12.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchtext-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

torchtext-0.12.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchtext-0.12.0-cp38-cp38-manylinux2014_aarch64.whl (12.8 MB view details)

Uploaded CPython 3.8

torchtext-0.12.0-cp38-cp38-manylinux1_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.8

torchtext-0.12.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchtext-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

torchtext-0.12.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

torchtext-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl (12.9 MB view details)

Uploaded CPython 3.7m

torchtext-0.12.0-cp37-cp37m-manylinux1_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.7m

torchtext-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file torchtext-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 391dd25cc426ade637da7297e6d72eaf5efc5fa13a4e25cf2fa5d93119bb176b
MD5 82a5e5c094f5ed662784c1b05106d417
BLAKE2b-256 70a804ea5b84b866a5fa3b9f0391006c2c0a11d2bca3090f897b861989830361

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp310-cp310-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36a8c9d6ddbfb70904f15caade91f8deb28b35c2693347853f1bea7f65f00b40
MD5 d1b62452f0d1786af7063c128719f994
BLAKE2b-256 c41fd96e850c97d6453e8637ac2177619d9700f906d0f87abde4006bb276d87f

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 174bc6b33d77d9eebbae473f98389183a0c269c68416372ca614b12cfa326969
MD5 0af1a044a1f0d14340f5bb7c3d2af61d
BLAKE2b-256 967ad2440cca2e3e8191d4af9f7f027d515cd829aa760255111ef36d861787dd

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af04961985c419579662e703243fa592d74fc44e2863a44c23214b377cf426d8
MD5 69bb2ffeb0190c94b522058d3d3aed7e
BLAKE2b-256 a147ef5e94a227220c86337fe75009affe40d2ac307aaefc2e994280db8dd9b5

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66792b1e6d3929944a8d47ad371c71de07a4023f5692385ba7e50c61e111f2f2
MD5 76831dbc447a09ca909fb2217621d1a5
BLAKE2b-256 ebf37f2f9247a469325b0ea39e43f40a976cbcc145e8635835f88911eba545b3

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59912472689e5734ccdd134a0352e46bb36cecd3d59b323e097474f4c4e4bf9a
MD5 ea9786a2d2a6c6ee19265129e2713fb0
BLAKE2b-256 ef8248a6d58ed8cc3bfaab5d560acbe4b4856d40545bfdda49985c0dc60a65fa

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1845c480fe47c641816d770efac3a32fb927673d46b00c062a2ec377bc312cdc
MD5 996c0950041c1bbe13b7afce00b2a29c
BLAKE2b-256 b8e057d1b3b68d25f7fdfd4ab9cb290a6670edf373565922f79b2cdd17497b3d

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8bbf5649e4dc691535920437c09017fcab7cfed7125ed0cfe1e1a3bbe792ab93
MD5 0e66c1091b46be0283cd0b4f76449c28
BLAKE2b-256 3ffbe93d421e96a0cdf69ad7cccfde4c6be48be9ba971077d3d3fbcad0e58a43

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7fa7557fe5542b58c09abb4bf14e0c6ed6afe653606e318080ba0718d3e1eda
MD5 78f343697b5d5f75ff336c9c2d867a45
BLAKE2b-256 09cf9cab047be367ddf32f4a1a84b1883a0754ed69f0430d8e6c330d25e88318

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ea13e79b02d226adb122ecc8f9648c768e0b683e32fd8b3c0c0c22e8661ed6f
MD5 76a68382fa8b7d494c24bd0776dc336c
BLAKE2b-256 b9629962efcdc1a8adf93b4c7c1634b930f89d6def3e32a6233f6767b67460ac

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 24b34a1b857aeef8d0c6e7b3ed2d9230d0a36df5bdb9dd5262b018675b739306
MD5 c2c39d05e52c063b4e59a7d731da1ab6
BLAKE2b-256 5b229653d652c7ddda62d18f96525815fa725b0563ec3f0374a7271767eacc7c

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ecd9a32064ea5caf78c7e4843719ecabe100066b32df8d228a6f2ba6bc5ea8b
MD5 db929ced4c6e90ddad503be87ebffbf7
BLAKE2b-256 7618285cdf1e083cf80a7c96b252bd2c2afbeeeb31f08839845f095ccd32c307

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 365e5f640e29d2fc924cc274f024ee02e49e680b5a6d10d4d7ccdd1665b73120
MD5 9043af2cc9ef7a7e73dbcabfe8a8e501
BLAKE2b-256 577cfda80107f0326ea48a0d16889b121c8178c0698e41458e7b1e546b48e374

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bce2a8f6f3a82974b950ee526640b3f747e7bade32b92d0747687bfe76af8d81
MD5 01c9ed2d77f70245f23bc3952b039f2f
BLAKE2b-256 5c9bff86c4d49262a3489f02d53da7e8b895e8529fb76d1e0865dc313627beb2

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87530abac557e9702d41edd89c94ccbc4871d43c0f479af97ae3342836e875ec
MD5 3c6a43d55390a93d79598838ab7f89e6
BLAKE2b-256 0844b01eca9e5be36af256d2898158a63fcce4d620228f531b6245718e26cc93

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09a047a90615febb5280bb39f69e89de515212d8d0f75b85e5ad474221f1744a
MD5 71383013d6f2a73ce5795d913dee770d
BLAKE2b-256 028e65d49d3c0e46200cc6442a6bac3cd65e6a04c3c84bbfc6a5fdf56f7babae

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 21b6b5a00000ad9dfa09d984a1a7b7cdd79c8310c2a780e672cdf95a2bc26c1b
MD5 7f6f0bc2dfd59616e382a31504c6d9e6
BLAKE2b-256 52aa210df5ea0eaa0bbdbed16ccb0931164cb820b74714edcf5bace68cb260f3

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1db04814d0289429bebd776707ea58d251166f56cc8298956101534a20f0a5cd
MD5 1a4942039d4206cd91f0a5be0bed3af5
BLAKE2b-256 c753b2a874be405142508c7d0fe3dfa6971e1a12fe7c3449e87736a5fa99ec73

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchtext-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchtext-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63d9b6e94af6092c472c77e26cf466599eccc1e3a0facc59c87d7611b5afcda6
MD5 30f98afea6d68a83eeb2ce97b5d1c993
BLAKE2b-256 01eba69f6d776822fd6ca18c29036884f1d1ea4542c44a4f53b317289fa86d86

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page