Text utilities and datasets for PyTorch
Project description
torchtext
This repository consists of:
torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vectors)
torchtext.datasets: Pre-built loaders for common NLP datasets
Installation
Make sure you have Python 2.7 or 3.5+ and PyTorch 0.2.0 or newer. You can then install torchtext using pip:
pip install torchtext
Optional requirements
If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:
pip install spacy python -m spacy download en
Alternatively, you might want to use Moses tokenizer from NLTK. You have to install NLTK and download the data needed:
pip install nltk python -m nltk.downloader perluniprops nonbreaking_prefixes
Data
The data module provides the following:
Ability to describe declaratively how to load a custom NLP dataset that’s in a “normal” format:
>>> pos = data.TabularDataset( ... path='data/pos/pos_wsj_train.tsv', format='tsv', ... fields=[('text', data.Field()), ... ('labels', data.Field())]) ... >>> sentiment = data.TabularDataset( ... path='data/sentiment/train.json', format='json', ... fields={'sentence_tokenized': ('text', data.Field(sequential=True)), ... 'sentiment_gold': ('labels', data.Field(sequential=False))})
Ability to define a preprocessing pipeline:
>>> src = data.Field(tokenize=my_custom_tokenizer) >>> trg = data.Field(tokenize=my_custom_tokenizer) >>> mt_train = datasets.TranslationDataset( ... path='data/mt/wmt16-ende.train', exts=('.en', '.de'), ... fields=(src, trg))
Batching, padding, and numericalizing (including building a vocabulary object):
>>> # continuing from above >>> mt_dev = data.TranslationDataset( ... path='data/mt/newstest2014', exts=('.en', '.de'), ... fields=(src, trg)) >>> src.build_vocab(mt_train, max_size=80000) >>> trg.build_vocab(mt_train, max_size=40000) >>> # mt_dev shares the fields, so it shares their vocab objects >>> >>> train_iter = data.BucketIterator( ... dataset=mt_train, batch_size=32, ... sort_key=lambda x: data.interleave_keys(len(x.src), len(x.trg))) >>> # usage >>> next(iter(train_iter)) <data.Batch(batch_size=32, src=[LongTensor (32, 25)], trg=[LongTensor (32, 28)])>
Wrapper for dataset splits (train, validation, test):
>>> TEXT = data.Field() >>> LABELS = data.Field() >>> >>> train, val, test = data.TabularDataset.splits( ... path='/data/pos_wsj/pos_wsj', train='_train.tsv', ... validation='_dev.tsv', test='_test.tsv', format='tsv', ... fields=[('text', TEXT), ('labels', LABELS)]) >>> >>> train_iter, val_iter, test_iter = data.BucketIterator.splits( ... (train, val, test), batch_sizes=(16, 256, 256), >>> sort_key=lambda x: len(x.text), device=0) >>> >>> TEXT.build_vocab(train) >>> LABELS.build_vocab(train)
Datasets
The datasets module currently contains:
Sentiment analysis: SST and IMDb
Question classification: TREC
Entailment: SNLI
Language modeling: abstract class + WikiText-2
Machine translation: abstract class + Multi30k, IWSLT, WMT14
Sequence tagging (e.g. POS/NER): abstract class + UDPOS
Others are planned or a work in progress:
Question answering: SQuAD
See the test directory for examples of dataset usage.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file torchtext-0.2.3.tar.gz
.
File metadata
- Download URL: torchtext-0.2.3.tar.gz
- Upload date:
- Size: 42.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 268157efa287daa7fa78cc94e41d6e624dc1362dd85791df49ab86b888836de6 |
|
MD5 | b7bf31efcdc2bb2e70d2c3063756e4c6 |
|
BLAKE2b-256 | 7890474d5944d43001a6e72b9aaed5c3e4f77516fbef2317002da2096fd8b5ea |