Skip to main content

Text utilities and datasets for PyTorch

Project description

https://travis-ci.org/pytorch/text.svg?branch=master https://codecov.io/gh/pytorch/text/branch/master/graph/badge.svg https://readthedocs.org/projects/torchtext/badge/?version=latest

torchtext

This repository consists of:

  • torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vectors)

  • torchtext.datasets: Pre-built loaders for common NLP datasets

Installation

Make sure you have Python 2.7 or 3.5+ and PyTorch 0.2.0 or newer. You can then install torchtext using pip:

pip install torchtext

Optional requirements

If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:

pip install spacy
python -m spacy download en

Alternatively, you might want to use Moses tokenizer from NLTK. You have to install NLTK and download the data needed:

pip install nltk
python -m nltk.downloader perluniprops nonbreaking_prefixes

Data

The data module provides the following:

  • Ability to describe declaratively how to load a custom NLP dataset that’s in a “normal” format:

    >>> pos = data.TabularDataset(
    ...    path='data/pos/pos_wsj_train.tsv', format='tsv',
    ...    fields=[('text', data.Field()),
    ...            ('labels', data.Field())])
    ...
    >>> sentiment = data.TabularDataset(
    ...    path='data/sentiment/train.json', format='json',
    ...    fields={'sentence_tokenized': ('text', data.Field(sequential=True)),
    ...            'sentiment_gold': ('labels', data.Field(sequential=False))})
  • Ability to define a preprocessing pipeline:

    >>> src = data.Field(tokenize=my_custom_tokenizer)
    >>> trg = data.Field(tokenize=my_custom_tokenizer)
    >>> mt_train = datasets.TranslationDataset(
    ...     path='data/mt/wmt16-ende.train', exts=('.en', '.de'),
    ...     fields=(src, trg))
  • Batching, padding, and numericalizing (including building a vocabulary object):

    >>> # continuing from above
    >>> mt_dev = data.TranslationDataset(
    ...     path='data/mt/newstest2014', exts=('.en', '.de'),
    ...     fields=(src, trg))
    >>> src.build_vocab(mt_train, max_size=80000)
    >>> trg.build_vocab(mt_train, max_size=40000)
    >>> # mt_dev shares the fields, so it shares their vocab objects
    >>>
    >>> train_iter = data.BucketIterator(
    ...     dataset=mt_train, batch_size=32,
    ...     sort_key=lambda x: data.interleave_keys(len(x.src), len(x.trg)))
    >>> # usage
    >>> next(iter(train_iter))
    <data.Batch(batch_size=32, src=[LongTensor (32, 25)], trg=[LongTensor (32, 28)])>
  • Wrapper for dataset splits (train, validation, test):

    >>> TEXT = data.Field()
    >>> LABELS = data.Field()
    >>>
    >>> train, val, test = data.TabularDataset.splits(
    ...     path='/data/pos_wsj/pos_wsj', train='_train.tsv',
    ...     validation='_dev.tsv', test='_test.tsv', format='tsv',
    ...     fields=[('text', TEXT), ('labels', LABELS)])
    >>>
    >>> train_iter, val_iter, test_iter = data.BucketIterator.splits(
    ...     (train, val, test), batch_sizes=(16, 256, 256),
    >>>     sort_key=lambda x: len(x.text), device=0)
    >>>
    >>> TEXT.build_vocab(train)
    >>> LABELS.build_vocab(train)

Datasets

The datasets module currently contains:

  • Sentiment analysis: SST and IMDb

  • Question classification: TREC

  • Entailment: SNLI

  • Language modeling: abstract class + WikiText-2

  • Machine translation: abstract class + Multi30k, IWSLT, WMT14

  • Sequence tagging (e.g. POS/NER): abstract class + UDPOS

Others are planned or a work in progress:

  • Question answering: SQuAD

See the test directory for examples of dataset usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtext-0.2.3.tar.gz (42.7 kB view details)

Uploaded Source

File details

Details for the file torchtext-0.2.3.tar.gz.

File metadata

  • Download URL: torchtext-0.2.3.tar.gz
  • Upload date:
  • Size: 42.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for torchtext-0.2.3.tar.gz
Algorithm Hash digest
SHA256 268157efa287daa7fa78cc94e41d6e624dc1362dd85791df49ab86b888836de6
MD5 b7bf31efcdc2bb2e70d2c3063756e4c6
BLAKE2b-256 7890474d5944d43001a6e72b9aaed5c3e4f77516fbef2317002da2096fd8b5ea

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page