Skip to main content

Text utilities and datasets for PyTorch

Project description

https://travis-ci.org/pytorch/text.svg?branch=master https://codecov.io/gh/pytorch/text/branch/master/graph/badge.svg http://readthedocs.org/projects/torchtext/badge/?version=latest

torchtext

This repository consists of:

  • torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vectors)

  • torchtext.datasets: Pre-built loaders for common NLP datasets

Installation

Make sure you have Python 2.7 or 3.5+ and PyTorch 0.4.0 or newer. You can then install torchtext using pip:

pip install torchtext

For PyTorch versions before 0.4.0, please use pip install torchtext==0.2.3.

Optional requirements

If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:

pip install spacy
python -m spacy download en

Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses:

pip install sacremoses

Documentation

Find the documentation here.

Data

The data module provides the following:

  • Ability to describe declaratively how to load a custom NLP dataset that’s in a “normal” format:

    >>> pos = data.TabularDataset(
    ...    path='data/pos/pos_wsj_train.tsv', format='tsv',
    ...    fields=[('text', data.Field()),
    ...            ('labels', data.Field())])
    ...
    >>> sentiment = data.TabularDataset(
    ...    path='data/sentiment/train.json', format='json',
    ...    fields={'sentence_tokenized': ('text', data.Field(sequential=True)),
    ...            'sentiment_gold': ('labels', data.Field(sequential=False))})
  • Ability to define a preprocessing pipeline:

    >>> src = data.Field(tokenize=my_custom_tokenizer)
    >>> trg = data.Field(tokenize=my_custom_tokenizer)
    >>> mt_train = datasets.TranslationDataset(
    ...     path='data/mt/wmt16-ende.train', exts=('.en', '.de'),
    ...     fields=(src, trg))
  • Batching, padding, and numericalizing (including building a vocabulary object):

    >>> # continuing from above
    >>> mt_dev = datasets.TranslationDataset(
    ...     path='data/mt/newstest2014', exts=('.en', '.de'),
    ...     fields=(src, trg))
    >>> src.build_vocab(mt_train, max_size=80000)
    >>> trg.build_vocab(mt_train, max_size=40000)
    >>> # mt_dev shares the fields, so it shares their vocab objects
    >>>
    >>> train_iter = data.BucketIterator(
    ...     dataset=mt_train, batch_size=32,
    ...     sort_key=lambda x: data.interleave_keys(len(x.src), len(x.trg)))
    >>> # usage
    >>> next(iter(train_iter))
    <data.Batch(batch_size=32, src=[LongTensor (32, 25)], trg=[LongTensor (32, 28)])>
  • Wrapper for dataset splits (train, validation, test):

    >>> TEXT = data.Field()
    >>> LABELS = data.Field()
    >>>
    >>> train, val, test = data.TabularDataset.splits(
    ...     path='/data/pos_wsj/pos_wsj', train='_train.tsv',
    ...     validation='_dev.tsv', test='_test.tsv', format='tsv',
    ...     fields=[('text', TEXT), ('labels', LABELS)])
    >>>
    >>> train_iter, val_iter, test_iter = data.BucketIterator.splits(
    ...     (train, val, test), batch_sizes=(16, 256, 256),
    >>>     sort_key=lambda x: len(x.text), device=0)
    >>>
    >>> TEXT.build_vocab(train)
    >>> LABELS.build_vocab(train)

Datasets

The datasets module currently contains:

  • Sentiment analysis: SST and IMDb

  • Question classification: TREC

  • Entailment: SNLI, MultiNLI

  • Language modeling: abstract class + WikiText-2, WikiText103, PennTreebank

  • Machine translation: abstract class + Multi30k, IWSLT, WMT14

  • Sequence tagging (e.g. POS/NER): abstract class + UDPOS, CoNLL2000Chunking

  • Question answering: 20 QA bAbI tasks

  • Text classification: AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull

Others are planned or a work in progress:

  • Question answering: SQuAD

See the test directory for examples of dataset usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtext-0.4.0.tar.gz (45.8 kB view details)

Uploaded Source

Built Distribution

torchtext-0.4.0-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file torchtext-0.4.0.tar.gz.

File metadata

  • Download URL: torchtext-0.4.0.tar.gz
  • Upload date:
  • Size: 45.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for torchtext-0.4.0.tar.gz
Algorithm Hash digest
SHA256 e04ca965fb1d74161fd1f4b5222ee4fa1ad6c02f1e7df213495883384f2fa408
MD5 470597c5588c26ad7430486695c0343c
BLAKE2b-256 31801cde2a940fe42d5572487e47533f4b08302a0dd2c64bbd04116731cd7109

See more details on using hashes here.

Provenance

File details

Details for the file torchtext-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: torchtext-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for torchtext-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 094520d9cd0af6a05368d9023fdc91dc038232bd9d128c7b548ec2200dba53ec
MD5 79b2a7a89ea41fb562b7b41e8767798c
BLAKE2b-256 4394929d6bd236a4fb5c435982a7eb9730b78dcd8659acf328fd2ef9de85f483

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page