Text utilities and datasets for PyTorch
Project description
torchtext
This repository consists of:
torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vectors)
torchtext.datasets: Pre-built loaders for common NLP datasets
Installation
Make sure you have Python 2.7 or 3.5+ and PyTorch 0.4.0 or newer. You can then install torchtext using pip:
pip install torchtext
For PyTorch versions before 0.4.0, please use pip install torchtext==0.2.3.
Optional requirements
If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:
pip install spacy python -m spacy download en
Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses:
pip install sacremoses
Documentation
Find the documentation here.
Data
The data module provides the following:
Ability to describe declaratively how to load a custom NLP dataset that’s in a “normal” format:
>>> pos = data.TabularDataset( ... path='data/pos/pos_wsj_train.tsv', format='tsv', ... fields=[('text', data.Field()), ... ('labels', data.Field())]) ... >>> sentiment = data.TabularDataset( ... path='data/sentiment/train.json', format='json', ... fields={'sentence_tokenized': ('text', data.Field(sequential=True)), ... 'sentiment_gold': ('labels', data.Field(sequential=False))})
Ability to define a preprocessing pipeline:
>>> src = data.Field(tokenize=my_custom_tokenizer) >>> trg = data.Field(tokenize=my_custom_tokenizer) >>> mt_train = datasets.TranslationDataset( ... path='data/mt/wmt16-ende.train', exts=('.en', '.de'), ... fields=(src, trg))
Batching, padding, and numericalizing (including building a vocabulary object):
>>> # continuing from above >>> mt_dev = datasets.TranslationDataset( ... path='data/mt/newstest2014', exts=('.en', '.de'), ... fields=(src, trg)) >>> src.build_vocab(mt_train, max_size=80000) >>> trg.build_vocab(mt_train, max_size=40000) >>> # mt_dev shares the fields, so it shares their vocab objects >>> >>> train_iter = data.BucketIterator( ... dataset=mt_train, batch_size=32, ... sort_key=lambda x: data.interleave_keys(len(x.src), len(x.trg))) >>> # usage >>> next(iter(train_iter)) <data.Batch(batch_size=32, src=[LongTensor (32, 25)], trg=[LongTensor (32, 28)])>
Wrapper for dataset splits (train, validation, test):
>>> TEXT = data.Field() >>> LABELS = data.Field() >>> >>> train, val, test = data.TabularDataset.splits( ... path='/data/pos_wsj/pos_wsj', train='_train.tsv', ... validation='_dev.tsv', test='_test.tsv', format='tsv', ... fields=[('text', TEXT), ('labels', LABELS)]) >>> >>> train_iter, val_iter, test_iter = data.BucketIterator.splits( ... (train, val, test), batch_sizes=(16, 256, 256), >>> sort_key=lambda x: len(x.text), device=0) >>> >>> TEXT.build_vocab(train) >>> LABELS.build_vocab(train)
Datasets
The datasets module currently contains:
Sentiment analysis: SST and IMDb
Question classification: TREC
Entailment: SNLI, MultiNLI
Language modeling: abstract class + WikiText-2, WikiText103, PennTreebank
Machine translation: abstract class + Multi30k, IWSLT, WMT14
Sequence tagging (e.g. POS/NER): abstract class + UDPOS, CoNLL2000Chunking
Question answering: 20 QA bAbI tasks
Text classification: AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull
Others are planned or a work in progress:
Question answering: SQuAD
See the test directory for examples of dataset usage.
Experimental Code
We have re-written several datasets under `torchtext.experimental.datasets`:
Sentiment analysis: IMDb
Language modeling: abstract class + WikiText-2, WikiText103, PennTreebank
A new pattern is introduced in Release v0.5.0. Several other datasets are also in the new pattern:
Unsupervised learning dataset: Enwik9
Text classification: AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull
Disclaimer on Datasets
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.
If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torchtext-0.5.0.tar.gz
.
File metadata
- Download URL: torchtext-0.5.0.tar.gz
- Upload date:
- Size: 54.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f22e24e9b939fff56b9118c78dc07aafec8dcc67164de15b9b5ed339e4179c6 |
|
MD5 | 799f7bb957bd7095aa92f2554e8fd30c |
|
BLAKE2b-256 | 58f2ccad6aaec0494afec1529af17b1a20a86e0bf9b5e86a79f4e65cc02f67a6 |
Provenance
File details
Details for the file torchtext-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: torchtext-0.5.0-py3-none-any.whl
- Upload date:
- Size: 73.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1caed2e155c45b4885daedb735b0f41e2f86ecd9dc788f75f824683bf1645f67 |
|
MD5 | 08b3bb64c1bf4eb15c2dcfa3e8d3b91f |
|
BLAKE2b-256 | 79ef54b8da26f37787f5c670ae2199329e7dccf195c060b25628d99e587dac51 |