A Pytorch port of Tensorflow's VGGish embedding model.
Project description
Torch VGGish
A PyTorch port of VGGish1,
a feature embedding frontend for audio classification models. The weights are ported directly from the tensorflow model, so embeddings created using torchvggish
will be identical.
Quick start
There are two options: you can install the last stable version from pypi, or clone this repo and install.
# optional: create virtual env
cd torchvggish && python3 -m venv .env
source activate .env/bin/activate
pip install -i https://test.pypi.org/simple/ torchvggish==0.1
# OR get the latest version
git clone git@github.com:harritaylor/torchvggish.git
pip install -r requirements.txt
Usage
Barebones example of creating embeddings from an example
wav file:
from torchvggish import vggish, vggish_input
# Initialise model and download weights
embedding_model = vggish()
embedding_model.eval()
example = vggish_input.wavfile_to_examples("example.wav")
embeddings = embedding_model.forward(example)
1. S. Hershey et al., ‘CNN Architectures for Large-Scale Audio Classification’,\ in International Conference on Acoustics, Speech and Signal Processing (ICASSP),2017\ Available: https://arxiv.org/abs/1609.09430, https://ai.google/research/pubs/pub45611
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchvggish-0.2.tar.gz
(9.7 kB
view details)
File details
Details for the file torchvggish-0.2.tar.gz
.
File metadata
- Download URL: torchvggish-0.2.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc4d7cc17db557867bf793625f8897f0fc0c6877be737df26ee7d9df6e4ce35f |
|
MD5 | d35be1004550d4a640705654e6ec8daf |
|
BLAKE2b-256 | 1ac8162f65a3d6498d06bfae86839448e99ffa2fa9343f51dabfc8174e999942 |