image and video datasets and models for torch deep learning
Reason this release was yanked:
So that users won't accidentally install this when using python 3.11
Project description
torch-vision
This repository consists of:
vision.datasets : Data loaders for popular vision datasets
vision.models : Definitions for popular model architectures, such as AlexNet, VGG, and ResNet and pre-trained models.
vision.transforms : Common image transformations such as random crop, rotations etc.
vision.utils : Useful stuff such as saving tensor (3 x H x W) as image to disk, given a mini-batch creating a grid of images, etc.
Installation
Anaconda:
conda install torchvision -c soumith
pip:
pip install torchvision
>From source:
python setup.py install
Datasets
The following dataset loaders are available:
Datasets have the API: - __getitem__ - __len__ They all subclass from torch.utils.data.Dataset Hence, they can all be multi-threaded (python multiprocessing) using standard torch.utils.data.DataLoader.
For example:
torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)
In the constructor, each dataset has a slightly different API as needed, but they all take the keyword args:
transform - a function that takes in an image and returns a transformed version
common stuff like ToTensor, RandomCrop, etc. These can be composed together with transforms.Compose (see transforms section below)
target_transform - a function that takes in the target and transforms it. For example, take in the caption string and return a tensor of word indices.
MNIST
dset.MNIST(root, train=True, transform=None, target_transform=None, download=False)
root: root directory of dataset where processed/training.pt and processed/test.pt exist
train: True - use training set, False - use test set.
transform: transform to apply to input images
target_transform: transform to apply to targets (class labels)
download: whether to download the MNIST data
COCO
This requires the COCO API to be installed
Detection:
dset.CocoDetection(root="dir where images are", annFile="json annotation file", [transform, target_transform])
LSUN
dset.LSUN(db_path, classes='train', [transform, target_transform])
db_path = root directory for the database files
classes =
'train' - all categories, training set
'val' - all categories, validation set
'test' - all categories, test set
['bedroom_train', 'church_train', …] : a list of categories to load
CIFAR
dset.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)
dset.CIFAR100(root, train=True, transform=None, target_transform=None, download=False)
root : root directory of dataset where there is folder cifar-10-batches-py
train : True = Training set, False = Test set
download : True = downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, does not do anything.
STL10
dset.STL10(root, split='train', transform=None, target_transform=None, download=False)
root : root directory of dataset where there is folder stl10_binary
- split'train' = Training set, 'test' = Test set, 'unlabeled' = Unlabeled set,
'train+unlabeled' = Training + Unlabeled set (missing label marked as -1)
- downloadTrue = downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, does not do anything.
SVHN
dset.SVHN(root, split='train', transform=None, target_transform=None, download=False)
root : root directory of dataset where there is folder SVHN
split : 'train' = Training set, 'test' = Test set, 'extra' = Extra training set
- downloadTrue = downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, does not do anything.
ImageFolder
A generic data loader where the images are arranged in this way:
root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png
dset.ImageFolder(root="root folder path", [transform, target_transform])
It has the members:
self.classes - The class names as a list
self.class_to_idx - Corresponding class indices
self.imgs - The list of (image path, class-index) tuples
Imagenet-12
This is simply implemented with an ImageFolder dataset.
The data is preprocessed as described here
PhotoTour
Learning Local Image Descriptors Data http://phototour.cs.washington.edu/patches/default.htm
import torchvision.datasets as dset
import torchvision.transforms as transforms
dataset = dset.PhotoTour(root = 'dir where images are',
name = 'name of the dataset to load',
transform=transforms.ToTensor())
print('Loaded PhotoTour: {} with {} images.'
.format(dataset.name, len(dataset.data)))
Models
The models subpackage contains definitions for the following model architectures:
AlexNet: AlexNet variant from the “One weird trick” paper.
VGG: VGG-11, VGG-13, VGG-16, VGG-19 (with and without batch normalization)
ResNet: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152
SqueezeNet: SqueezeNet 1.0, and SqueezeNet 1.1
You can construct a model with random weights by calling its constructor:
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
We provide pre-trained models for the ResNet variants, SqueezeNet 1.0 and 1.1, and AlexNet, using the PyTorch model zoo. These can be constructed by passing pretrained=True:
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be atleast 224.
The images have to be loaded in to a range of [0, 1] and then normalized using mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225]
An example of such normalization can be found in the imagenet example here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>
Transforms
Transforms are common image transforms. They can be chained together using transforms.Compose
transforms.Compose
One can compose several transforms together. For example.
transform = transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
std = [ 0.229, 0.224, 0.225 ]),
])
Transforms on PIL.Image
Scale(size, interpolation=Image.BILINEAR)
Rescales the input PIL.Image to the given ‘size’. ‘size’ will be the size of the smaller edge.
For example, if height > width, then image will be rescaled to (size * height / width, size) - size: size of the smaller edge - interpolation: Default: PIL.Image.BILINEAR
CenterCrop(size) - center-crops the image to the given size
Crops the given PIL.Image at the center to have a region of the given size. size can be a tuple (target_height, target_width) or an integer, in which case the target will be of a square shape (size, size)
RandomCrop(size, padding=0)
Crops the given PIL.Image at a random location to have a region of the given size. size can be a tuple (target_height, target_width) or an integer, in which case the target will be of a square shape (size, size) If padding is non-zero, then the image is first zero-padded on each side with padding pixels.
RandomHorizontalFlip()
Randomly horizontally flips the given PIL.Image with a probability of 0.5
RandomSizedCrop(size, interpolation=Image.BILINEAR)
Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
This is popularly used to train the Inception networks - size: size of the smaller edge - interpolation: Default: PIL.Image.BILINEAR
Pad(padding, fill=0)
Pads the given image on each side with padding number of pixels, and the padding pixels are filled with pixel value fill. If a 5x5 image is padded with padding=1 then it becomes 7x7
Transforms on torch.*Tensor
Normalize(mean, std)
Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std
Conversion Transforms
ToTensor() - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
ToPILImage() - Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]
Generic Transforms
Lambda(lambda)
Given a Python lambda, applies it to the input img and returns it. For example:
transforms.Lambda(lambda x: x.add(10))
Utils
make_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False)
Given a 4D mini-batch Tensor of shape (B x C x H x W), or a list of images all of the same size, makes a grid of images
normalize=True will shift the image to the range (0, 1), by subtracting the minimum and dividing by the maximum pixel value.
if range=(min, max) where min and max are numbers, then these numbers are used to normalize the image.
scale_each=True will scale each image in the batch of images separately rather than computing the (min, max) over all images.
Example usage is given in this notebook <https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>
save_image(tensor, filename, nrow=8, padding=2, normalize=False, range=None, scale_each=False)
Saves a given Tensor into an image file.
If given a mini-batch tensor, will save the tensor as a grid of images.
All options after filename are passed through to make_grid. Refer to it’s documentation for more details
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for torchvision-0.1.8-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2885d02c90541a9888b8881a722862ff53bbf73a2d7617d7c670ccd33121029f |
|
MD5 | 28ec9aac051af27b21d96cf5883fb799 |
|
BLAKE2b-256 | 8c5233d739bcc547f22c522def535a8da7e6e5a0f6b98594717f519b5cb1a4e1 |